【洛谷 P2764】 最小路径覆盖问题(最大流)
题目链接
首先有\(n\)条路径,每条路径就是一个点,然后尽量合并,答案就是点数-合并数。
套路拆点,源连入,出连汇,原有的边入出连。
最大流就是最大合并数,第一问解决。
然后怎么输出方案?
我是找到所有路径中的最后一个点,然后根据残量网络一直往前跳,\(dfs\)倒序输出。
#include <cstdio>
#include <queue>
#include <cstdlib>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 360;
const int MAXM = 16010;
struct point{
int x, y, time;
}Now;
queue <int> q;
struct Edge{
int from, to, next, rest;
}e[MAXM];
int head[MAXN], num = 1, s, t, now, n, m, dis[MAXN], a, b;
inline void Add(int from, int to, int flow){
e[++num] = (Edge){ from, to, head[from], flow }; head[from] = num;
e[++num] = (Edge){ to, from, head[to], 0 }; head[to] = num;
}
int re(){
memset(dis, 0, sizeof dis);
q.push(s); dis[s] = 1;
while(q.size()){
now = q.front(); q.pop();
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && !dis[e[i].to])
dis[e[i].to] = dis[now] + 1, q.push(e[i].to);
}
return dis[t];
}
int find(int u, int flow){
if(u == t || !flow) return flow;
int sum = 0, T;
for(int i = head[u]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] == dis[u] + 1){
T = find(e[i].to, min(flow - sum, e[i].rest));
e[i].rest -= T; e[i ^ 1].rest += T; sum += T;
}
if(!sum) dis[u] = 0;
return sum;
}
int dinic(){
int ans = 0;
while(re()) ans += find(s, INF);
return ans;
}
void dfs(int u){
for(int i = head[u + n]; i; i = e[i].next)
if(e[i].to <= n && e[i].rest)
dfs(e[i].to);
printf("%d ", u);
}
int ans;
int main(){
scanf("%d%d", &n, &m); s = 345; t = 350;
for(int i = 1; i <= m; ++i){
scanf("%d%d", &a, &b);
Add(a, b + n, 1);
}
for(int i = 1; i <= n; ++i)
Add(s, i, 1), Add(i + n, t, 1);
ans = n - dinic();
for(int i = 1; i <= n; ++i){
int flag = 1;
for(int j = head[i]; j; j = e[j].next)
if(e[j].to > n && e[j].to <= 2 * n && !e[j].rest){
flag = 0; break;
}
if(flag) dfs(i),
putchar('\n');
}
printf("%d\n", ans);
return 0;
}
【洛谷 P2764】 最小路径覆盖问题(最大流)的更多相关文章
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
- 【刷题】洛谷 P2764 最小路径覆盖问题
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
- 洛谷P2764 最小路径覆盖问题(最大流)
传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...
- 洛谷 P2764 最小路径覆盖问题【匈牙利算法】
经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...
- 洛谷 P2764(最小路径覆盖=节点数-最大匹配)
给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...
- 洛谷P2764 最小路径覆盖问题(二分图)
题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...
- 洛谷 [P2764]最小路径覆盖问题
二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...
- 洛谷-p2764(最小路径覆盖)(网络流24题)
#include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...
随机推荐
- Kafka设计解析
Kafka剖析(一):Kafka背景及架构介绍 Kafka设计解析(二):Kafka High Availability (上) Kafka设计解析(三):Kafka High Availabilit ...
- DNS原理及解析过程
本文主要参考自:http://369369.blog.51cto.com/319630/812889 并做了小幅修改 什么是DNS? 因特网上的主机和人类一样,也可以使用多种方式进行识别.主机的一种识 ...
- jQuery树形控件zTree
初始化如下: function zTreeInit(){ parentCode = ""; setting = { view: { dblClickExpand: false, s ...
- P1939 【模板】矩阵加速(数列)
题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值. 输入输出格式 输入格式: 第一行一 ...
- linux 修改 elf 文件的dynamic linker 和 rpath
linux 修改 elf 文件的dynamic linker 和 rpath https://nixos.org/patchelf.html 下载地址 https://nixos.org/releas ...
- Qt 事件处理机制
Qt 事件处理机制 因为这篇文章写得特别好,将Qt的事件处理机制能够阐述的清晰有条理,并且便于学习.于是就装载过来了(本文做了排版,并删减了一些冗余的东西,希望原主勿怪),以供学习之用. 简介 在Qt ...
- Unity3D for VR 学习(9): Unity Shader 光照模型 (illumination model)
关于光照模型 所谓模型,一般是由学术算法发起, 经过大量实际数据验证而成的可靠公式 现在还记得2009年做TD-SCDMA移动通信算法的时候,曾经看过自由空间传播模型(Free space propa ...
- 【期望】【P5081】Tweetuzki 爱取球
Description Tweetuzki 有一个袋子,袋子中有 \(N\) 个无差别的球.Tweetuzki 每次随机取出一个球后放回.求取遍所有球的期望次数. 取遍是指,袋子中所有球都被取出来过至 ...
- CSS中background样式的repeat和no-repeat
自http://blog.sina.com.cn/s/blog_98eef7830101cv8t.html获取的知识,特此感谢. <!DOCTYPE html> <html lang ...
- poj3648 Wedding
Wedding Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10975 Accepted: 3355 Specia ...