POJ 1811 Prime Test

Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 32534   Accepted: 8557
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2
 /*遇上一个题目不同,这个题目是输出最小的质因子*/
#include<iostream>
using namespace std;
#include<cstdio>
#define S 10
#include<cstdlib>
#include<ctime>
#define ll long long
ll cas, maxz;
ll read()
{
ll ans=;char c;
c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='')
{
ans=ans*+c-'';
c=getchar();
}
return ans;
}
ll quick_mul_mod(ll a,ll b,ll c)//a*b%c
{
ll ret=;
a%=c;b%=c;
while(b)
{
if(b&)
{
ret+=a;
ret%=c;
b--;
}
a<<=;
a%=c;
b>>=;
}
return ret;
}
ll gcd(ll a,ll b)
{
if(a==) return ;
if(a<) return gcd(-a,b);
if(b==)
return a;
return gcd(b,a%b);
}
ll Pollard_rho(ll x,ll c)
{
ll x1=rand()%(x-)+;
ll x2=x1;
int i=,k=;
while()
{
i++;
x1=(quick_mul_mod(x1,x1,x)+c)%x;
ll d=gcd(x2-x1,x);
if(d!=&&d!=x) return d;
if(x2==x1) return x;
if(i==k)
{
x2=x1;
k+=k;
}
} }
ll quick_mod(ll a,ll b,ll c)//ji suan a^b%c
{
ll ans=;
a%=c;
while(b)
{
if(b&)
{
b--;
ans=quick_mul_mod(ans,a,c);
}
b>>=;
a=quick_mul_mod(a,a,c);
}
return ans;
}
bool Miller_rabin(ll n)
{
if(n==) return true;
if(n<=||!(n&)) return false;
ll u=n-,t=;
while(!(u&))
{
u>>=;
t++;
}
for(int i=;i<S;++i)
{
ll x=rand()%(n-)+;
x=quick_mod(x,u,n);
for(int i=;i<=t;++i)
{
ll y=quick_mul_mod(x,x,n);
if(y==&&x!=&&x!=n-)
return false;
x=y;
}
if(x!=) return false;
}
return true;
}
void findpri(ll n)
{
if(n<=) return;
if(Miller_rabin(n))
{
if(n!=)
maxz=min(maxz,n);
return;
}
ll p=n;
while(p==n)
p=Pollard_rho(p,rand()%(n-)+);
findpri(p);
findpri(n/p);
}
int main()
{
srand(time());
cas=read();
while(cas--)
{
maxz=(<<)-;/*不知道为什么这个赋初值的最大值,只有赋值为小于等于(1<<31)-1才对,我的maxz明明是long long型的啊*/
ll n=read();
findpri(n);
if(Miller_rabin(n))
printf("Prime\n");
else printf("%lld\n",maxz);
}
return ;
}

Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test的更多相关文章

  1. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  2. POJ 1811 Prime Test (Rabin-Miller强伪素数测试 和Pollard-rho 因数分解)

    题目链接 Description Given a big integer number, you are required to find out whether it's a prime numbe ...

  3. poj 1811 Prime Test 大数素数测试+大数因子分解

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case ...

  4. Miller&&Pollard POJ 1811 Prime Test

    题目传送门 题意:素性测试和大整数分解, N (2 <= N < 254). 分析:没啥好讲的,套个模板,POJ上C++提交 收获:写完这题得到模板 代码: /************** ...

  5. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  6. POJ 1811 Prime Test( Pollard-rho整数分解经典题 )

    链接:传送门 题意:输入 n ,判断 n 是否为素数,如果是合数输出 n 的最素因子 思路:Pollard-rho经典题 /************************************** ...

  7. POJ 1811 Prime Test 素性测试 分解素因子

    题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的  素数与素性测试 素因子分解利用 ...

  8. POJ 1811 Prime Test(Miller-Rabin & Pollard-rho素数测试)

    Description Given a big integer number, you are required to find out whether it's a prime number. In ...

  9. POJ 1811 Prime Test

    题意:对于一个大整数,判断是否质数,如果不是质数输出最小质因子. 解法:判断质数使用Miller-Rabin测试,分解质因子使用Pollard-Rho,Miller-Rabin测试用的红书模板,将测试 ...

随机推荐

  1. iphone6设置企业qq

    1.首先要确定foxmail的账户服务器信息,右上角-账户账户管理-服务器设置 2.iphone端:

  2. 一个Servlet处理增删改查的方法

    处理的思路是在servlet中定义不同的增删改查方法,页面请求 的时候携带请求的参数,根据参数判断调用不同的方法. package cn.xm.small.Servlet; import java.i ...

  3. PHP提取url

    <?php $str = parse_url('http://localhost/?id=2&cd=2', PHP_URL_QUERY); ECHO $str; parse_str($s ...

  4. python进阶之关键字和运算符触发魔法方法

    前言 python有众多的魔法方法,它们会在满足某种条件下触发执行,掌握好魔法方法的使用,可以加快程序的运行效率,同时减少逻辑调用. 关键字与魔法方法 python的一些魔法方法是关键字触发的,即py ...

  5. 如何在Linux下用C/C++语言操作数据库sqlite3(很不错!设计编译链接等很多问题!)

    from : http://blog.chinaunix.NET/uid-21556133-id-118208.html 安装Sqlite3: 从www.sqlite.org上下载Sqlite3.2. ...

  6. Machine Learning系列--维特比算法

    维特比算法(Viterbi algorithm)是在一个用途非常广的算法,本科学通信的时候已经听过这个算法,最近在看 HMM(Hidden Markov model) 的时候也看到了这个算法.于是决定 ...

  7. <转>MYSQL数据库数据拆分之分库分表总结

    数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的 ...

  8. effective c++读书笔记(一)

    很早之前就听过这本书,找工作之前读一读.看了几页,个人感觉实在是生涩难懂,非常不符合中国人的思维方式.之前也有博主做过笔记,我来补充一些自己的理解. 我看有人记了笔记,还不错:http://www.3 ...

  9. windows 下 nginx 配置虚拟主机

    1. 在 nginx 的配置文件 nginx.conf 里面 引入虚拟主机配置文件,以后所有的虚拟主机配置文件都在写这个文件里 include       vhost.conf; (或者新建vhost ...

  10. Python中的json操作

    Python中的json操作 标签(空格分隔): python 编码 json 字符串前缀问题 字符串前缀可以有r,u r:表示原始(raw)字符串,比如'\n'不会被转义.常用于正则. u:表示un ...