「WC2018即时战略」

题目描述

小 M 在玩一个即时战略 (Real Time Strategy) 游戏。不同于大多数同类游戏,这个游戏的地图是树形的。也就是说,地图可以用一个由 \(n\) 个结点,\(n - 1\) 条边构成的连通图来表示。这些结点被编号为 \(1 \sim n\)。

每个结点有两种可能的状态:“已知的”或“未知的”。游戏开始时,只有 \(1\) 号结点是已知的。

在游戏的过程中,小 M 可以尝试探索更多的结点。具体来说,小 M 每次操作时需要选择一个已知的结点 \(x\),和一个不同于 \(x\) 的任意结点 \(y\)(结点 \(y\) 可以是未知的)。然后游戏的自动寻路系统会给出 \(x\) 到 \(y\) 的最短路径上的第二个结点 \(z\),也就是从 \(x\) 走到 \(y\) 的最短路径上与 \(x\) 相邻的结点。此时,如果结点 \(z\) 是未知的,小 M 会将它标记为已知的。

这个游戏的目标是:利用至多 \(T\) 次探索操作,让所有结点的状态都成为已知的。然而小 M 还是这个游戏的新手,她希望得到你的帮助。

解题思路 :

首先有一个比较直观的暴力,random_shuffle一个询问顺序,同时维护一棵“已知树”。

每次从根节点开始询问,回答要么是当前点的儿子,要么是一个未知节点,如果是当前点的儿子就进入儿子节点,否则就把未知节点添加进树。

这样子做复杂度和询问次数都是 \(O(n^2)\),加上一条链的暴力可以得到 \(65\) 分。

实际上每次如果是已知节点的话,只需要进入儿子对应的子树询问即可,所以很容易想到用点分树维护这个“已知树”,每次直接找到这个儿子对应的点分中心进行询问,树高变成 \(logn\) 。

但是加点操作会破坏点分树的性质,使得树高会大于 \(logn\) 以至于退化到平方级别的复杂度,在这里可以用替罪羊树的思想,每次加完点后暴力向上检查子树的平衡性暴力重构,\(\alpha\) 这里一般设 \(0.7\) 。

不过由于我维护点分树信息的时候用 \(map\) 存了每个儿子对应的点分中心是什么,所以我的复杂度是 $O(nlog^2n) $ ,有点卡常数,不保证所有地方都能过。

#include "rts.h"
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
const int N = 1000005; map<int, int> mp[N], ss[N];
int vis[N], vi[N], sz[N], in[N], cc[N], mx[N], fa[N];
int size[N], id[N], ps[N], all, mn, rt, Root = 1; map<int, int>::iterator it;
namespace Line{
int s[2] = {1, 1};
inline void solve(int n){
for(int i = 1, x; i < n; i++){
int now = id[i], tw = 1;
while(!vis[now]){
x = explore(s[tw], now);
if(vis[x]) x = explore(s[tw^=1], now);
vis[x] = 1, s[tw] = x;
}
}
}
} inline void cleartag(int u){
in[u] = 1;
for(map<int,int>::iterator it = mp[u].begin(); it != mp[u].end(); it++)
if(it->second) cleartag(it->second);
}
inline void getsize(int u, int ff){
int now = 0; sz[u] = 1;
for(map<int, int>::iterator it = mp[u].begin(); it != mp[u].end(); it++){
int v = it->first;
if(v == ff || !in[v]) continue;
getsize(v, u), sz[u] += sz[v];
if(sz[v] >= now) now = sz[v];
}
now = max(now, all - sz[u]);
if(now <= mn) mn = now, rt = u;
}
inline void rebuild(int u){
int last = all; in[u] = 0;
for(map<int, int>::iterator it = mp[u].begin(); it != mp[u].end(); it++){
int v = it->first;
if(!in[v]) continue;
mn = all = sz[v] >= sz[u] ? last - sz[u] : sz[v];
getsize(v, u);
size[rt] = all, fa[rt] = u, mx[u] = Max(mx[u], all);
mp[u][v] = rt, ss[u][rt] = v, mp[v][u] = 0, rebuild(rt);
}
} inline void update(int u){
int ned = 0;
for(int x = u; x != Root; x = fa[x]){
size[fa[x]]++;
if(size[x] > mx[fa[x]]) mx[fa[x]] = size[x];
if(mx[fa[x]] >= size[fa[x]] * 0.735) ned = fa[x];
}
if(!ned) return;
if(ned){
cleartag(ned);
all = mn = size[ned], getsize(ned, fa[ned]);
if(ned == Root) Root = rt;
size[rt] = all, fa[rt] = fa[ned];
int k = ss[fa[rt]][ned];
ss[fa[rt]][rt] = k, mp[fa[rt]][k] = rt, rebuild(rt);
}
} inline void addnode(int pos){
for(register int u = Root; ; ){
int x = explore(u, pos);
if(!vis[x]){
fa[x] = u, size[x] = vis[x] = 1;
mp[u][x] = ss[u][x] = x, mp[x][u] = 0, update(x);
break;
} u = mp[u][x];
}
} void play(int n, int T, int datatype){
srand(19262333);
for(int i = 1; i < n; i++) id[i] = i + 1;
random_shuffle(id + 1, id + n), vis[1] = 1;
if(datatype == 3) return (void) (Line::solve(n));
for(int i = 1; i < n; i++) while(!vis[id[i]]) addnode(id[i]);
}

「WC2018即时战略」的更多相关文章

  1. [WC2018]即时战略——动态点分治(替罪羊式点分树)

    题目链接: [WC2018]即时战略 题目大意:给一棵结构未知的树,初始时除1号点其他点都是黑色,1号点是白色,每次你可以询问一条起点为白色终点任意的路径,交互库会自动返回给你这条路径上与起点相邻的节 ...

  2. WC2018 即时战略

    交互题 一棵树,一开始只有 1 号点是已知的,其他的都是未知的,你可以调用函数 explore(x,y) ,其中 x 必须是已知的,函数会找到 x 到 y 路径上第二个点,并把它标成已知,求最小步数使 ...

  3. 【UOJ#349】[WC2018] 即时战略

    题目链接 题意 一开始已知一号点. 每次可以选定一个已知点和一个未知点,然后交互库会返回从已知点出发到达未知点路径上的第二个点. 要求在有限步之内知道每一个点. 次数要求: 链的情况要求 \(O(n) ...

  4. [WC2018]即时战略(LCT,splay上二分)

    [UOJ题面]http://uoj.ac/problem/349 一道非常好的与数据结构有关的交互题. 首先先看部分分做法, 一上来我们肯定得钦定一个 \(explore\) 的顺序,直接随机就好. ...

  5. 「WC2018」即时战略

    「WC2018」即时战略 考虑对于一条链:直接随便找点,然后不断问即可. 对于一个二叉树,树高logn,直接随便找点,然后不断问即可. 正解: 先随便找到一个点,问出到1的路径 然后找别的点,考虑问出 ...

  6. loj2341「WC2018」即时战略(随机化,LCT/动态点分治)

    loj2341「WC2018」即时战略(随机化,LCT/动态点分治) loj Luogu 题解时间 对于 $ datatype = 3 $ 的数据,explore操作次数只有 $ n+log n $ ...

  7. 【WC2018】即时战略(动态点分治,替罪羊树)

    [WC2018]即时战略(动态点分治,替罪羊树) 题面 UOJ 题解 其实这题我也不知道应该怎么确定他到底用了啥.只是想法很类似就写上了QwQ. 首先链的部分都告诉你要特殊处理那就没有办法只能特殊处理 ...

  8. 「WC2018」州区划分(FWT)

    「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. ...

  9. 【WC2018】即时战略

    题目描述 小M在玩一个即时战略(Real Time Strategy)游戏.不同于大多数同类游戏,这个游戏的地图是树形的. 也就是说,地图可以用一个由 n个结点,n?1条边构成的连通图来表示.这些结点 ...

随机推荐

  1. 数组与集合List的相互转化

    数组转化为集合 #此运用的是Arrays中的asList方法,返回一个List集合 *当数组元素为基本数据类型是把整个数组当作一个元素放入List集合中,代码举例: ,,}; List<int[ ...

  2. JWT机制了解

    JWT简介 JSON Web Token(JWT)是一个开放式标准(RFC 7519),它定义了一种紧凑(Compact)且自包含(Self-contained)的方式,用于在各方之间以JSON对象安 ...

  3. three.js_sence(场景)

    1,THREE.Scene 的作用 (1)THREE.Scene 对象是所有不同对象的容器,也就是说该对象保存所有物体.光源.摄像机以及渲染所需的其他对象. (2)THREE.Scene 对象又是被称 ...

  4. php简单文件管理器——php经典实例

    <html> <head> <title>文件管理</title> <meta charset='utf-8' /> </head&g ...

  5. 巅峰极客CTF writeup[上]

    经验教训 1.CTF不比实战,最好不要死磕.死磕就输了.我就是死磕在缓存文件死的.真的惭愧: 2.对于flag的位置不要太局限于web目录下,如果是命令执行直接上find / -name flag*: ...

  6. Linux 添加普通用户到 sudoers 文件

    前言 Linux 的普通用户(uid >= 500)不具有某些命令的执行权限,为了执行较高权限的命令,一般有两种方法: 第一种是使用 su - 命令切换到 root 用户去执行: 另外一种方法是 ...

  7. HDU 5936 朋友

    题意为给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1. 在一局游戏开始时,会确定一个节点作为根. 当一方操作时,他们需要先选择一个不为根的点,满足该点到其父亲的边权为1; 然后 ...

  8. Java Web 远程调试

    Java Web 远程 调试 Tomcat 下载压缩版服务器 环境:Tomcat.Eclipse,做远程调试我们并不需要其他特殊插件 1.配置Tomcat/bin/startup.bat 在前面增加代 ...

  9. Eloqument 学习

    参考地址:https://d.laravel-china.org/docs/5.5/eloquent#mass-assignment

  10. Perl 连接Oracle 出现OCI missing的问题及解决

    问题描述 新申请了一个虚拟机操作系统: Win Server 2008, 64位 , 8核, 16G Memory 上 http://www.activestate.com/activeperl 下载 ...