「WC2018即时战略」

题目描述

小 M 在玩一个即时战略 (Real Time Strategy) 游戏。不同于大多数同类游戏,这个游戏的地图是树形的。也就是说,地图可以用一个由 \(n\) 个结点,\(n - 1\) 条边构成的连通图来表示。这些结点被编号为 \(1 \sim n\)。

每个结点有两种可能的状态:“已知的”或“未知的”。游戏开始时,只有 \(1\) 号结点是已知的。

在游戏的过程中,小 M 可以尝试探索更多的结点。具体来说,小 M 每次操作时需要选择一个已知的结点 \(x\),和一个不同于 \(x\) 的任意结点 \(y\)(结点 \(y\) 可以是未知的)。然后游戏的自动寻路系统会给出 \(x\) 到 \(y\) 的最短路径上的第二个结点 \(z\),也就是从 \(x\) 走到 \(y\) 的最短路径上与 \(x\) 相邻的结点。此时,如果结点 \(z\) 是未知的,小 M 会将它标记为已知的。

这个游戏的目标是:利用至多 \(T\) 次探索操作,让所有结点的状态都成为已知的。然而小 M 还是这个游戏的新手,她希望得到你的帮助。

解题思路 :

首先有一个比较直观的暴力,random_shuffle一个询问顺序,同时维护一棵“已知树”。

每次从根节点开始询问,回答要么是当前点的儿子,要么是一个未知节点,如果是当前点的儿子就进入儿子节点,否则就把未知节点添加进树。

这样子做复杂度和询问次数都是 \(O(n^2)\),加上一条链的暴力可以得到 \(65\) 分。

实际上每次如果是已知节点的话,只需要进入儿子对应的子树询问即可,所以很容易想到用点分树维护这个“已知树”,每次直接找到这个儿子对应的点分中心进行询问,树高变成 \(logn\) 。

但是加点操作会破坏点分树的性质,使得树高会大于 \(logn\) 以至于退化到平方级别的复杂度,在这里可以用替罪羊树的思想,每次加完点后暴力向上检查子树的平衡性暴力重构,\(\alpha\) 这里一般设 \(0.7\) 。

不过由于我维护点分树信息的时候用 \(map\) 存了每个儿子对应的点分中心是什么,所以我的复杂度是 $O(nlog^2n) $ ,有点卡常数,不保证所有地方都能过。

#include "rts.h"
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
const int N = 1000005; map<int, int> mp[N], ss[N];
int vis[N], vi[N], sz[N], in[N], cc[N], mx[N], fa[N];
int size[N], id[N], ps[N], all, mn, rt, Root = 1; map<int, int>::iterator it;
namespace Line{
int s[2] = {1, 1};
inline void solve(int n){
for(int i = 1, x; i < n; i++){
int now = id[i], tw = 1;
while(!vis[now]){
x = explore(s[tw], now);
if(vis[x]) x = explore(s[tw^=1], now);
vis[x] = 1, s[tw] = x;
}
}
}
} inline void cleartag(int u){
in[u] = 1;
for(map<int,int>::iterator it = mp[u].begin(); it != mp[u].end(); it++)
if(it->second) cleartag(it->second);
}
inline void getsize(int u, int ff){
int now = 0; sz[u] = 1;
for(map<int, int>::iterator it = mp[u].begin(); it != mp[u].end(); it++){
int v = it->first;
if(v == ff || !in[v]) continue;
getsize(v, u), sz[u] += sz[v];
if(sz[v] >= now) now = sz[v];
}
now = max(now, all - sz[u]);
if(now <= mn) mn = now, rt = u;
}
inline void rebuild(int u){
int last = all; in[u] = 0;
for(map<int, int>::iterator it = mp[u].begin(); it != mp[u].end(); it++){
int v = it->first;
if(!in[v]) continue;
mn = all = sz[v] >= sz[u] ? last - sz[u] : sz[v];
getsize(v, u);
size[rt] = all, fa[rt] = u, mx[u] = Max(mx[u], all);
mp[u][v] = rt, ss[u][rt] = v, mp[v][u] = 0, rebuild(rt);
}
} inline void update(int u){
int ned = 0;
for(int x = u; x != Root; x = fa[x]){
size[fa[x]]++;
if(size[x] > mx[fa[x]]) mx[fa[x]] = size[x];
if(mx[fa[x]] >= size[fa[x]] * 0.735) ned = fa[x];
}
if(!ned) return;
if(ned){
cleartag(ned);
all = mn = size[ned], getsize(ned, fa[ned]);
if(ned == Root) Root = rt;
size[rt] = all, fa[rt] = fa[ned];
int k = ss[fa[rt]][ned];
ss[fa[rt]][rt] = k, mp[fa[rt]][k] = rt, rebuild(rt);
}
} inline void addnode(int pos){
for(register int u = Root; ; ){
int x = explore(u, pos);
if(!vis[x]){
fa[x] = u, size[x] = vis[x] = 1;
mp[u][x] = ss[u][x] = x, mp[x][u] = 0, update(x);
break;
} u = mp[u][x];
}
} void play(int n, int T, int datatype){
srand(19262333);
for(int i = 1; i < n; i++) id[i] = i + 1;
random_shuffle(id + 1, id + n), vis[1] = 1;
if(datatype == 3) return (void) (Line::solve(n));
for(int i = 1; i < n; i++) while(!vis[id[i]]) addnode(id[i]);
}

「WC2018即时战略」的更多相关文章

  1. [WC2018]即时战略——动态点分治(替罪羊式点分树)

    题目链接: [WC2018]即时战略 题目大意:给一棵结构未知的树,初始时除1号点其他点都是黑色,1号点是白色,每次你可以询问一条起点为白色终点任意的路径,交互库会自动返回给你这条路径上与起点相邻的节 ...

  2. WC2018 即时战略

    交互题 一棵树,一开始只有 1 号点是已知的,其他的都是未知的,你可以调用函数 explore(x,y) ,其中 x 必须是已知的,函数会找到 x 到 y 路径上第二个点,并把它标成已知,求最小步数使 ...

  3. 【UOJ#349】[WC2018] 即时战略

    题目链接 题意 一开始已知一号点. 每次可以选定一个已知点和一个未知点,然后交互库会返回从已知点出发到达未知点路径上的第二个点. 要求在有限步之内知道每一个点. 次数要求: 链的情况要求 \(O(n) ...

  4. [WC2018]即时战略(LCT,splay上二分)

    [UOJ题面]http://uoj.ac/problem/349 一道非常好的与数据结构有关的交互题. 首先先看部分分做法, 一上来我们肯定得钦定一个 \(explore\) 的顺序,直接随机就好. ...

  5. 「WC2018」即时战略

    「WC2018」即时战略 考虑对于一条链:直接随便找点,然后不断问即可. 对于一个二叉树,树高logn,直接随便找点,然后不断问即可. 正解: 先随便找到一个点,问出到1的路径 然后找别的点,考虑问出 ...

  6. loj2341「WC2018」即时战略(随机化,LCT/动态点分治)

    loj2341「WC2018」即时战略(随机化,LCT/动态点分治) loj Luogu 题解时间 对于 $ datatype = 3 $ 的数据,explore操作次数只有 $ n+log n $ ...

  7. 【WC2018】即时战略(动态点分治,替罪羊树)

    [WC2018]即时战略(动态点分治,替罪羊树) 题面 UOJ 题解 其实这题我也不知道应该怎么确定他到底用了啥.只是想法很类似就写上了QwQ. 首先链的部分都告诉你要特殊处理那就没有办法只能特殊处理 ...

  8. 「WC2018」州区划分(FWT)

    「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. ...

  9. 【WC2018】即时战略

    题目描述 小M在玩一个即时战略(Real Time Strategy)游戏.不同于大多数同类游戏,这个游戏的地图是树形的. 也就是说,地图可以用一个由 n个结点,n?1条边构成的连通图来表示.这些结点 ...

随机推荐

  1. Eclipse 断点调试

    Eclipse 开发专用的Debug模式,用于发现问题解决问题. 1. 设置断点,程序会在改位置停止. 2. 按F5(step into), F6(step over)执行.F5指跳入,逐语句.会进入 ...

  2. C语言中的序列点

    TAG: C, 序列点 DATE: 2013-08-07 序列点是程序执行序列中一些特殊的点. 当有序列点存在时,序列点前面的表达式必须求值完毕,并且副作用也已经发生, 才会计算序列点后面的表达式和其 ...

  3. 【CodeForces】889 B. Restoration of string

    [题目]B. Restoration of string [题意]当一个字符串在字符串S中的出现次数不小于任意子串的出现次数时,定义这个字符串是高频字符串.给定n个字符串,求构造出最短的字符串S满足着 ...

  4. 8、V模型、W模型、H模型

    软件测试&软件工程 ·软件测试与软件工程息息相关,软件测试是软件工程组成中不可或缺的一部分.·在软件工程.项目管理.质量管理得到规范化应用的企业,软件测试也会进行得比较顺利,软件测试发挥的价值 ...

  5. 【IDEA】IDEA中配置tomcat虚拟路径的两种方法

    首先要确保使用的是本地的tomcat服务器,而不是maven插件. -------------------------第一种:使用IDEA工具自动配置(推荐这种)------------------- ...

  6. 2017百越杯反序列化writeup

    去年的了,之前也有研究过.只是因为感觉PHP反序列化挺好玩的所以就再研究了一遍.总之感觉反序列化漏洞挺好玩的. 题目代码: <?php class home{ private $method; ...

  7. python基础===string模块常量

    In [8]: import string In [9]: dir(string) In [10]: string.ascii_letters Out[10]: 'abcdefghijklmnopqr ...

  8. 浅谈Linux系统中如何查看进程 ——ps,pstree,top,w,全解

    进程是一个其中运行着一个或多个线程的地址空间和这些线程所需要的系统资源.一般来说,Linux系统会在进程之间共享程序代码和系统函数库,所以在任何时刻内存中都只有代码的一份拷贝. 1,ps命令 作用:p ...

  9. javaScript传递参数,参数变化问题

    值传递 var a=10; b(a); function b(v){ v--; } alert(a); //out 10 对象传递 var a={}; a.v=10; b(a); function b ...

  10. day4 使用yield实现单线程

    一.yield生成器(yield) yield用来结束while循环,并且能够保持之前循环的状态,下一次调用的时候直接从yield开始执行,执行yield后面的程序,并且重新进行循环:另外,yield ...