题目描述

“那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了。

和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了,旨在难到一帮大脑不够灵活的OIer们(JOHNKRAM真的不是说你……)。

言归正传,小X的梦中,他在西藏开了一家大型旅游公司,现在,他要为西藏的各个景点设计一组铁路线。但是,小X发现,来旅游的游客都很挑剔,他们乘 火车在各个景点间游览,景点的趣味当然是不用说啦,关键是路上。试想,若是乘火车一圈转悠,却发现回到了游玩过的某个景点,花了一大堆钱却在路上看不到好 的风景,那是有多么的恼火啊。

所以,小X为所有的路径定义了两个值,Vi和Pi,分别表示火车线路的风景趣味度和乘坐一次的价格。现在小X想知道,乘客从任意一个景点开始坐火车 走过的一条回路上所有的V之和与P之和的比值的最大值。以便为顾客们推荐一条环绕旅游路线(路线不一定包含所有的景点,但是不可以存在重复的火车路线)。

于是,小X梦醒之后找到了你……

输入输出格式

输入格式:

第一行两个正整数N,M,表示有N个景点,M条火车路线,火车路线是单向的。

以下M行,每行4个正整数,分别表示一条路线的起点,终点,V值和P值。

注意,两个顶点间可能有多条轨道,但一次只能走其中的一条。

输出格式:

一个实数,表示一条回路上最大的比值,保留1位小数。

若没有回路,输出-1。

输入输出样例

输入样例#1:
复制

5 6
1 2 1 1
4 1 6 2
5 4 8 1
2 3 2 2
5 2 4 1
3 5 6 4
输出样例#1: 复制

2.3

说明

对于30%的数据,1≤N≤100,1≤M≤20;

对于60%的数据,1≤N≤3,000,1≤M≤2,000;

对于100%的数据,1≤N≤7,000,1≤M≤20,000,1≤Vi,Pi≤1,000.

保证答案在200以内.

分数规划裸题(主要是得想到这个算法),分数规划实际上就是移项之后的二分答案。

二分之后SPFA判负环即可,注意要用DFS版的SPFA(这么重要的算法我以前竟然毫无所知)

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=;
struct P{ int to,nxt; double v1,v2; }e[N<<];
int n,m,u,v,len,h[N],vis[N],flag;
double w1,w2,dis[N]; void spfa(double now,int x){
if (flag) return;
vis[x]=;
for (int i=h[x],k; i; i=e[i].nxt)
if (dis[k=e[i].to]>dis[x]+now*e[i].v2-e[i].v1){
dis[k]=dis[x]+now*e[i].v2-e[i].v1;
if (!vis[k]) spfa(now,k); else { flag=; return; }
}
vis[x]=;
} bool check(double now){
flag=;
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
rep(i,,n){
spfa(now,i);
if (flag)break;
}
if (flag) return ; return ;
} int main(){
scanf("%d %d",&n,&m);
rep(i,,m){
scanf("%d %d %lf %lf",&u,&v,&w1,&w2);
e[++len].to=v; e[len].v1=w1; e[len].v2=w2; e[len].nxt=h[u]; h[u]=len;
}
double l=,r=200.0,mid;
while (l+0.01<r){
mid=(l+r)/;
if (check(mid))l=mid; else r=mid;
}
if (l==) printf("-1"); else printf("%.1lf",r);
return ;
}

[P1768]天路(分数规划+SPFA判负环)的更多相关文章

  1. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  2. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  3. bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)

    PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...

  4. bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...

  5. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  6. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  7. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  8. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  9. 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

随机推荐

  1. CodeForces 990B

    You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, u ...

  2. 【leetcode 简单】 第五十三题 删除重复的电子邮箱

    编写一个 SQL 查询,来删除 Person 表中所有重复的电子邮箱,重复的邮箱里只保留 Id 最小 的那个. +----+------------------+ | Id | Email | +-- ...

  3. jquery-load()方法

    调用load方法的完整格式是:load( url, [data], [callback] ), 其中: •url:是指要导入文件的地址. •data:可选参数:因为Load不仅仅可以导入静态的html ...

  4. POJ 3734 Blocks (矩阵快速幂)

    题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...

  5. 【译】第三篇 SQL Server代理警报和操作员

    本篇文章是SQL Server代理系列的第三篇,详细内容请参考原文. 正如这一系列的上一篇所述,SQL Server代理作业是由一系列的作业步骤组成,每个步骤由一个独立的类型去执行,除了步骤中执行的工 ...

  6. RMQ之ST求区间最大值

    题目链接:https://cn.vjudge.net/problem/HRBUST-1188 每一次按照二进制的方式进行更新,二维数组dp [i] [j],i表示下标,j表示从i 开始的往后移动2的j ...

  7. mysql中列的增删改

    增加列: ); ) after id; ) first; 修改列名: ); #change可改名字与字段类型 mysql> alter table a change uid uid int; Q ...

  8. python实战===python程序打包成exe

    推荐PyInstaller项目www.pyinstaller.org   安装方法: 先跑pip install pywin32再跑pip install pyinstaller即可 可用一句命令打包 ...

  9. CentOS中搭建Redis伪分布式集群【转】

    解压redis 先到官网https://redis.io/下载redis安装包,然后在CentOS操作系统中解压该安装包: tar -zxvf redis-3.2.9.tar.gz 编译redis c ...

  10. caffe Python API 之上卷积层(Deconvolution)

    对于convolution: output = (input + 2 * p  - k)  / s + 1; 对于deconvolution: output = (input - 1) * s + k ...