【动态规划/多重背包问题】POJ1014-Dividing
多重背包问题的优化版来做,详见之前的动态规划读书笔记。
dp[i][j]表示前i中数加得到j时第i种数最多剩余几个(不能加和得到i的情况下为-1)递推式为:
dp[i][j]=mi(dp[i-1][j]≥0,即前i-1种数就能达到数字j)
=-1(j<ai 或者 dp[i][j-ai]≤0,即再加上一个第i种数也无法达到j 或者 当前和小于当前数)
=dp[i][j-ai]-1(可以达到的情况)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; int a[];
int dp[+]; int main()
{
int kase=;
while (scanf("%d",&a[]))
{
kase++;
int sum=a[];
for (int i=;i<=;i++)
{
scanf("%d",&a[i]);
sum+=a[i]*i;
}
if (sum==) break; bool f=false;
if (sum%==)
{
sum=sum/;
for (int i=;i<=sum;i++) dp[i]=-;
dp[]=;
for (int i=;i<=;i++)
for (int j=;j<=sum;j++)
{
if (dp[j]>=) dp[j]=a[i];
else
{
if (j<i || dp[j-i]<=) dp[j]=-;
else dp[j]=dp[j-i]-;
}
}
if (dp[sum]>=) f=true;
}
cout<<"Collection #"<<kase<<':'<<endl;
if (f) cout<<"Can be divided."<<endl;
else cout<<"Can't be divided."<<endl;
cout<<endl;
}
}
【动态规划/多重背包问题】POJ1014-Dividing的更多相关文章
- 【动态规划/多重背包问题】POJ2392-Space Elevator
方法同POJ1014-Dividing,唯一不同点在于每一种block有最大限定高度a,故要以a为关键字进行排序,使得最大高度小的在前,否则最大高度小的再后可能放不上去. #include<io ...
- 【DP|多重背包可行性】POJ-1014 Dividing
Dividing Time Limit: 1000MS Memory Limit: 10000K Description Marsha and Bill own a collection of mar ...
- 51nod 多重背包问题(动态规划)
多重背包问题 一个背包,承量有限为W,有n种物体,第i种物体,价值Vi,占用重量为 Wi,且有Ci件,选择物品若干放入背包,使得总重量不超过背包的承重.总价值最大? 输入 第1行,2个整数,N和W中间 ...
- HDU 2844 Coins (多重背包问题DP)
题意:给定n种硬币,每种价值是a,数量是c,让你求不大于给定V的不同的价值数,就是说让你用这些硬币来组成多少种不同的价格,并且价格不大于V. 析:一看就应该知道是一个动态规划的背包问题,只不过是变形, ...
- 多重背包问题:悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(HDU 2191)(二进制优化)
悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 HDU 2191 一道裸的多重背包问题: #include<iostream> #include<algorithm> #i ...
- poj 1742 Coins (动态规划,背包问题)
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 32977 Accepted: 11208 Descripti ...
- O(V*n)的多重背包问题
多重背包问题: 有n件物品,第i件价值为wi,质量为vi,有c1件,问,给定容量V,求获得的最大价值. 朴素做法: 视为0,1,2,...,k种物品的分组背包 [每组只能选一个] f[i][j]=Ma ...
- 多重背包问题II
多重背包问题II 总体积是m,每个小物品的体积是A[i] ,每个小物品的数量是B[i],每个小物品的价值是C[i] 求能够放入背包内的最大物品能够获得的最大价值 和上一个很类似 上一题体积就是价值,这 ...
- 九度OJ 1455 珍惜现在,感恩生活 -- 动态规划(背包问题)
题目地址:http://ac.jobdu.com/problem.php?pid=1455 题目描述: 为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元, ...
随机推荐
- Redis笔记之常用命令
keys keys用来获取符合指定规则的键,keys的语法规则如下: keys <pattern> 比如最简单的全等匹配,下面这个命令只会匹配键值完全等于foo的: 127.0.0.1:6 ...
- 【译】第一篇 SQL Server代理概述
本篇文章是SQL Server代理系列的第一篇,详细内容请参考原文. SQL Server代理是SQL Server的作业调度和告警服务,如果使用得当,它可以大大简化DBA的工作量.SQL Serve ...
- JavaScript 使用闭包保护变量 防止污染
使用JavaScript编写插件或团队协作时,可使用闭包来解决此类以下两个问题: 1.定义过多全局变量,可能会造成全局变量命名冲突: 2.在插件内定义变量,需要保护该变量不被轻易修改: 优点:可以把局 ...
- 打表找规律C - Insertion Sort Gym - 101955C
题目链接:https://cn.vjudge.net/contest/273377#problem/C 给你 n,m,k. 这个题的意思是给你n个数,在对前m项的基础上排序的情况下,问你满足递增子序列 ...
- 对Feign的请求url 重写
需求:对当前请求的 url 重新构建 debug feign 的执行可知,重写 LoadBalancerFeignClient 类中的 execute 方法即可控制当前请求的url 代码分析 当引入 ...
- Java Spring boot 企业微信点餐系统
欢迎关注我的微信公众号:"Java面试通关手册" 回复关键字" springboot "免费领取(一个有温度的微信公众号,期待与你共同进步~~~坚持原创,分享美 ...
- 高性能优秀的服务框架-dubbo介绍
先来了解一下这些年架构的变化,下面的故事是我编的.... "传统架构":很多年前,刚学完JavaWeb开发的我凭借一人之力就开发了一个网站,网站 所有的功能和应用都集中在一起,方便 ...
- Arm-kernel 内存收集【转】
转自:http://blog.csdn.net/linyt/article/details/6627664 Linux kernel的内存管理子系统非常复杂,为了深入了解内存管理系统,我打算分多篇文章 ...
- ECMAScript 6 Promise 对象
一.Promise的含义 所谓Promise,简单说就是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果.从语法上说,Promise是一个对象,从它可以获取异步操作的消息. 1. ...
- 苹果receipt样例
使用[[NSBundle mainBundle] appStoreReceiptURL]方式获取receipt (iOS7及以上获取receipt的方法) 普通付费 "latest_rece ...