https://leetcode.com/problems/cherry-pickup/description/

In a N x N grid representing a field of cherries, each cell is one of three possible integers.

  • 0 means the cell is empty, so you can pass through;
  • 1 means the cell contains a cherry, that you can pick up and pass through;
  • -1 means the cell contains a thorn that blocks your way.

Your task is to collect maximum number of cherries possible by following the rules below:

  • Starting at the position (0, 0) and reaching (N-1, N-1) by moving right or down through valid path cells (cells with value 0 or 1);
  • After reaching (N-1, N-1), returning to (0, 0) by moving left or up through valid path cells;
  • When passing through a path cell containing a cherry, you pick it up and the cell becomes an empty cell (0);
  • If there is no valid path between (0, 0) and (N-1, N-1), then no cherries can be collected.

Example 1:

Input: grid =
[[0, 1, -1],
[1, 0, -1],
[1, 1, 1]]
Output: 5
Explanation:
The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.

Note:

  • grid is an N by N 2D array, with 1 <= N <= 50.
  • Each grid[i][j] is an integer in the set {-1, 0, 1}.
  • It is guaranteed that grid[0][0] and grid[N-1][N-1] are not -1.

思路

解答给出的第一种方法时贪心,但是并不是正确答案,正确解法还是万能的dp。

在 t 个steps后,我们到的位置 (r, c),有 r+c=t 。如果有两个人在位置在 t 个steps后在位置 positions (r1, c1) and (r2, c2) 上,那么有 r2 = r1 + c1 - c2。 这意味着变量r1, c1, c2唯一决定了两个都走了r1 + c1 number of steps人的位置。这是我们动态规划思想的基础。

自顶向下的dp:

Let dp[r1][c1][c2] be the most number of cherries obtained by two people starting at (r1, c1) and (r2, c2)and walking towards (N-1, N-1) picking up cherries, where r2 = r1+c1-c2.

If grid[r1][c1] and grid[r2][c2] are not thorns, then the value of dp[r1][c1][c2] is (grid[r1][c1] + grid[r2][c2]), plus the maximum of dp[r1+1][c1][c2]dp[r1][c1+1][c2]dp[r1+1][c1][c2+1]dp[r1][c1+1][c2+1] as appropriate. We should also be careful to not double count in case (r1, c1) == (r2, c2).

Why did we say it was the maximum of dp[r+1][c1][c2] etc.? It corresponds to the 4 possibilities for person 1 and 2 moving down and right:

  • Person 1 down and person 2 down: dp[r1+1][c1][c2];
  • Person 1 right and person 2 down: dp[r1][c1+1][c2];
  • Person 1 down and person 2 right: dp[r1+1][c1][c2+1];
  • Person 1 right and person 2 right: dp[r1][c1+1][c2+1];

要点:1. 将题目中要求的从起始到末尾在返回起始点,等价为二个人同时从起点出发去重点。

      2. 一个三维的dp数组,标记了两个人的位置,以及当前最优解

   3. 子问题之间的关系,要避免重复计算。

代码

class Solution {
int[][][] memo;
int[][] grid;
int N;
public int cherryPickup(int[][] grid) {
this.grid = grid;
N = grid.length;
memo = new int[N][N][N];
for (int[][] layer: memo)
for (int[] row: layer)
Arrays.fill(row, Integer.MIN_VALUE);
return Math.max(0, dp(0, 0, 0));
}
public int dp(int r1, int c1, int c2) {
int r2 = r1 + c1 - c2;
if (N == r1 || N == r2 || N == c1 || N == c2 ||
grid[r1][c1] == -1 || grid[r2][c2] == -1) { //到达边界或者遇到阻碍
return -999999;
} else if (r1 == N-1 && c1 == N-1) {
return grid[r1][c1];
} else if (memo[r1][c1][c2] != Integer.MIN_VALUE) { // 如果这个位置计算过了则不需要再次计算
return memo[r1][c1][c2];
} else {
int ans = grid[r1][c1];
if (c1 != c2) ans += grid[r2][c2];
ans += Math.max(Math.max(dp(r1, c1+1, c2+1), dp(r1+1, c1, c2+1)),
Math.max(dp(r1, c1+1, c2), dp(r1+1, c1, c2)));
memo[r1][c1][c2] = ans;
return ans;
}
}
}

上面是自顶向下的dp。另一中是自低向上的dp:

At time t, let dp[c1][c2] be the most cherries that we can pick up for two people going from (0, 0) to (r1, c1)and (0, 0) to (r2, c2), where r1 = t-c1, r2 = t-c2. Our dynamic program proceeds similarly to Approach 

class Solution {
public int cherryPickup(int[][] grid) {
int N = grid.length;
int[][] dp = new int[N][N];
for (int[] row: dp) Arrays.fill(row, Integer.MIN_VALUE);
dp[0][0] = grid[0][0]; for (int t = 1; t <= 2*N - 2; ++t) {
int[][] dp2 = new int[N][N];
for (int[] row: dp2) Arrays.fill(row, Integer.MIN_VALUE); for (int i = Math.max(0, t-(N-1)); i <= Math.min(N-1, t); ++i) {
for (int j = Math.max(0, t-(N-1)); j <= Math.min(N-1, t); ++j) {
if (grid[i][t-i] == -1 || grid[j][t-j] == -1) continue;
int val = grid[i][t-i];
if (i != j) val += grid[j][t-j];
for (int pi = i-1; pi <= i; ++pi)
for (int pj = j-1; pj <= j; ++pj)
if (pi >= 0 && pj >= 0)
dp2[i][j] = Math.max(dp2[i][j], dp[pi][pj] + val);
}
}
dp = dp2;
}
return Math.max(0, dp[N-1][N-1]);
}
}

LeetCode741. Cherry Pickup的更多相关文章

  1. [Swift]LeetCode741. 摘樱桃 | Cherry Pickup

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  2. [LeetCode] 741. Cherry Pickup 捡樱桃

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  3. [LeetCode] Cherry Pickup 捡樱桃

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  4. 741. Cherry Pickup

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  5. LeetCode 741. Cherry Pickup

    原题链接在这里:https://leetcode.com/problems/cherry-pickup/ 题目: In a N x N grid representing a field of che ...

  6. 动态规划-Cherry Pickup

    2020-02-03 17:46:04 问题描述: 问题求解: 非常好的题目,和two thumb其实非常类似,但是还是有个一点区别,就是本题要求最后要到达(n - 1, n - 1),只有到达了(n ...

  7. [LeetCode] Dungeon Game 地牢游戏

    The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...

  8. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  9. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

随机推荐

  1. Linux之Makefile20160707

    说一下LINUX下的Makefile,直接根据实际碰到的Makefile进行解读: 当make的目标为all时,-C $(KDIR) 指明跳转到内核源码目录下读取那里的Makefile:M=$(PWD ...

  2. Python高级语法总结

    1.Python面向对象 创建类 使用class语句来创建一个新类,class之后为类的名称并以冒号结尾,如下实例: class ClassName: '类的帮助信息' #类文档字符串 class_s ...

  3. 简单shell 编程

    简单shell编程  by  dreamboy #!/bin/bash while true do echo clear echo echo " 系统维护菜单 " echo &qu ...

  4. WPF系列之三:实现类型安全的INotifyPropertyChanged接口,可以不用“Magic string” 么?

    通常实现INotifyPropertyChanged接口很简单,为你的类只实现一个PropertyChanged 的Event就可以了. 例如实现一个简单的ViewModel1类: public cl ...

  5. [DeeplearningAI笔记]序列模型3.3集束搜索

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.3 集束搜索Beam Search 对于机器翻译来说,给定输入的句子,会返回一个随机的英语翻译结果,但是你想要一 ...

  6. java 关于值引用、地址引用的问题

    8种基本引用类型 四种整数类型(byte.short.int.long) 两种浮点数类型(float.double) 一种字符类型(char) 一种布尔类型(boolean) 以及如String, f ...

  7. centos7 ffmpeg安装

    #Nux Dextop库依赖于EPEL库,所有要先安装EPEL库yum -y install epel-release #安装Nux Dextop库rpm -Uvh http://li.nux.ro/ ...

  8. Error creating bean with name 'transactionManager' defined in ServletContext resource XXX

    spring & hibernate整合时候 ,并且使用hibernate.cfg.xml文件时回报这个错误, 解决办法,在hibernate.cfg.xml中加入 <property ...

  9. hdu 1846 Brave Gam

    Brave Game http://acm.hdu.edu.cn/showproblem.php?pid=1846 Time Limit: 1000/1000 MS (Java/Others)     ...

  10. 2015/10/9 Python核编初级部分学习总结

    终于在十一长假之后的两天看完了<Python核心编程>的初级部分.虽然到后来两章,类和环境看得越来越慢,越来越难以理解.很多东西只能靠强记,也没办法真正掌握了,我想了想,还是不强迫自己去背 ...