一、模式解析

  解释器模式是类的行为模式。给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。

以上是解释器模式的类图,事实上我很少附上类图,但解释器模式确实比较抽象,为了便于理解还是放了上来,此模式的要点是:

1、客户端提供一个文本、表达式或者其他,约定解析格式

2、针对文本中可以分为终结符表达式非终结符表达式

3、终结符表达式无需进一步解析,但仍需要转化为抽象接口的实例

4、针对非终结表达式,没一种标示需要定义一种解析类,如果后续有扩展,则进一步扩展一种解析类,并修改解析分支即可完成扩展

二、模式代码

1、定义整体环境类,保存除了解析器外,其他全局信息

package interpreter.patten;

public class Context {
private String input;
private String output;
public String getInput() {
return input;
}
public void setInput(String input) {
this.input = input;
}
public String getOutput() {
return output;
}
public void setOutput(String output) {
this.output = output;
}
}

2、定义抽象解析器

package interpreter.patten;

public abstract class AbstractExpression {
public abstract void interpret(Context context);
}

3、定义终结符解析器

package interpreter.patten;

public class TerminalExpression extends AbstractExpression {

    @Override
public void interpret(Context context) {
System.out.println("终结符解析器");
}
}

4、定义非终结符表达式

package interpreter.patten;

public class UnTerminalExpression extends AbstractExpression {

    @Override
public void interpret(Context context) {
System.out.println("非终结符解析器");
}
}

5、定义客户端类

package interpreter.patten;

import java.util.ArrayList;
import java.util.List; public class Client {
public static void main(String[] args) {
Context context=new Context();
List<AbstractExpression> list=new ArrayList<AbstractExpression>();
list.add(new TerminalExpression());
list.add(new UnTerminalExpression());
list.add(new TerminalExpression());
list.add(new UnTerminalExpression());
list.add(new TerminalExpression());
list.add(new UnTerminalExpression());
for(AbstractExpression expression:list){
expression.interpret(context);
}
}
}

6、客户端执行结果

终结符解析器
非终结符解析器
终结符解析器
非终结符解析器
终结符解析器
非终结符解析器

三、应用场景

以上模式代码完整的实现了类图中的所有内容,并打印出了结果,但是又显得毫无意义,看起来比较蠢,这是因为在我们的实际使用中解释器模式使用非常稀少,他只有在做特定公式的解析或者语言解析才会用到,很不幸,目前我的工作中似乎没有可以完整的展示此模式的例子,但是为了加深印象,我们采用《java与模式》中的例子进行说明

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2EAAAHeCAIAAACdbZThAAAgAElEQVR4nOy9L6zkSJa3fcGqtMMavGBXWlDSbEoNLyxg0LDhmA1ZbWtNBjYwaNbIatjE0mjRAIOFI6OBhkMsFRwZ9SIXLGBQ0B843z17KsLptNN22Ol8HpQ3rh0OR5yI+PnEv5ceAAAAAOBrXvZOAAAAAAAcDjQiAAAAALigEQEAAADABY0IAAAAAC5oRAAAAABwQSMCAAAAgAsaEQAAAABc0IgAAAAA4IJGBAAAAAAXNCLAUl5fX18gIK+vr3uXOQDA+UEjAizl5YV6FBQyHAAgADS1AEtBsgSGDAcACABNLcBSkCyBIcMBAAJAUwuwFCRLYMhwAIAA0NQCLAXJEhgyHAAgADS1AEtBsgSGDAcACABNLcBS9pIsdV23bbvLo/cFjQgAEIDhppb93kZgbzZweAkuWeq6juM4y7I0TS+XS9M0gROwL+EzHADgCRluammCRyBzwCG8SVhdmGVZURR3RJIkyZI0pGm65PYlUAcBAAKARpwNmQMOgU0iz/MoimxIVVVzI6nr2olkFl3XLbl9IdRBAIAAoBFnQ+aAQ2CTiKIoy7LBf8VvlGXZ931RFJfLJcuyOI6jKFLPn/x5uVzkYr1drozjWK9MkuRyuURRlOe5XC+BcRy/vLzIxeFHuqmDAAABQCPOhswBh4NoxCiK1KEYRZEsZ1Fp2HXd5XLRi30/YlEUOvqcJEme5/I7z/M4jtu2tWqy73sbW2CogwAAAUAjzobMAYcjaMS6rq1oS9NUpGEURXVdS+DlctHfvkYUZ2Fd13Vdp2lq/xtFkYpOBY0IAHBu0IizIXPAIbBJxHHsLDdpmsbRfFmWyZ+zNGKaptkb6kfs+15WT3ddZ69HIwIAnJtwGrEoCunbdKpTlmUy28m5Uka1nA7pONA/gUNgk5BZhvbPoijatrWBOlg8RSPKCHUcx1YX6rB10zRSbR1hqo+TuY8hoQ4CAAQgkEZUaSjLIW1H5WtECVwyEX7TTov+CRzCm0QURaLYqqrSaYJJkmig6r8oirQ6WI0omrJt2zzPRQ5WVXW5XOR3kiTyQyps27YyndHWrCiKiqKoquraAprtoA4CAAQghEaUvsf+qZ3KoEZcjjO5fl3on8BhF5OQpSTW89e/eeu1fkldkz+LotDfQlmWSZLYvRWrqhJ/oToR5ZaqqjQqdfCLf9FJQBiogwAAAQihEdW94eNrxDzPZQzaubJtW7tXsPRYTdNIz6ez6XX82ukOV4T+CRwwicCQ4QAAAQihEUe2c/M1osg+J7AsSxmh1t2DZQgsjuOiKOyWwnVdF0UhF+uw2rrQP4EDJhEYMhwAIACH04iDgVEU6fREmQXVexOt1JW48ACJm9A/gQMmERgyHAAgAI+hEfVAiDiOZRy5n7Opx7rQP4EDJhEYMhwAIAAhNKKzH68spZTf0zWivxUOGhEOAiYRGDIcACAAITSi7LKhGi5JEjsuPEUj2vWbslSlH9WIcrsVoytC/wQOmERgyHAAgAAE2h9RlqGkaSqrTCQwyzI5v8EuWC6KQgPtLr6yIZzusyj76cjyZ41cHycXb7QDDv0TOGASgSHDAQACEPQsviXbYvd97xwXu+LFs6B/AgdMIjBkOABAADiveTZkDji8e/fuBQLy7t27vcscAOD8oBFnQ+aAAyYRGDIcACAAaMTZkDnggEkEhgwHAAgAGnE2ZA44YBKBIcMBAAKARpwNmQMOmERgyHAAgACgEWdD5oDDYU1CDjqX37JNqW4y9dAcNsMBAM4EGnE2ZA44HNYk7Hb0sqWobjX/0Bw2wwEAzgQacTZkDjjsZRI3Nxyt6zqOY9GFWZbZo4keGuogAEAAhpta9nsbgb3ZwOHlumRJkiTP8zRN0zTN81zP/sne0POB5DChoigksCzL8YfWdf3y8jK+V3xd1/KU/muNqOF6xFHXdXLipYbPyYDQjGQ4AACsBX7E2ZA5T8uPP/74+fNnP1xMQrSdpW1bPVJS1GGWZXVdN02jIkxC5Lf18+k8whFuOgXruq6qSh4tcxPlFjnEUrCyVc83T9NUT8I8INRBAIAAoBFnQ+Y8LR8/fvzuu+98mThiEioBrUbs+77ruqIoiqKwutCeMG61493UdV3XdRRFVVWJn1LjbJpGzkZXMWqfKI7GhU/fDuogAEAA0IizIXOemUGZOFcjNk0Tx7EME1tltpFGTJJERrStH1FdhtaPiEYEAAAFjTgbMufJ8WXiXI2YJImqsWsaUUXkCF3XjV8gGlHnQYpGbNvWDmQPasQ8z4+8Sw51EAAgAGjE2ZA54MjEEZNI07Sua1kRon/KwpS+79u2TdO0KApZoRJFkfyoqkrXslyjLMvL5TIuE+s35HHqR4yiSG4syzKOY5GDuoCmbVs7YfGAUAcBAAKARpwNmQP91zJxxCTEb9e2rS4oFu+gTAeUzWusH7HrurIsb25qI9xc+yyPlt9d18kwt94rq1L0GvEjVlV15NUqAnUQACAAaMTZkDkgqExcyyTUvbcLUzbcOQjUQQCAAKARZ0PmgCIycRWTcPx84ZFR6b2ePgvqIABAANCIs7m2t/bPP/+s1/z8889c8yTX/Od//ucL9SUsZDgAQADQiLMhc0D5/PnzWn5EmA4ZDgAQADTibMgcEEQgfvz4EZMIDBkOABAANOJsyBzojUDsMYngkOEAAAFAI86GzAErEHtMIjhkOABAANCIsyFznhxHIPZ9/+7du8HlLLAR796929EAAACeBDTibMicZ8YXiD0mERwyHAAgAGjE2ZA5T8ugQOwxieCQ4QAAAUAjzobMeVr+8Ic/+AKxfyiTkHNcdtypexUeKMMBAB4XNOJsyBxweBSTyLJMfuR5/tAy8VEyHADgoUEjzobMAYetTaJt28vlslDVJUliD4NOkmRxuhaRpulgGpqmSZJk/FRA6iAAQADQiLMhc8DBMYmiKFZ/RJ7nS26vqkqdiBqyRTqn0zRNWZaD/8qyDI0IALA7aMTZkDng4JiEo8aOQJIkbds6gXEc75KYm6ARAQCOwHBTy35vI7A3Gzi8jGrEsizTNE3T1PoC27bNsixN0yzL7CByURQSqD62pmnyPI+iyHlonucSZ5ZlMr8wjuO6rrMsS5LEGZgelIPTNeLlcrnm87OvmWWZDGcXRaHXV1Ulr19Vlb04jmMno5qmkXdP0xSNCACwO/gRZ0PmgIOYRFEUWZZlWSbqRwST6B65zLrHdCqeqDq9QKcMOnP1LpeL/VMnFxZFURSF/I6iSIaPu65z9N+gHIyiaOIcxzzPfTfkYIT6IvKjaRr7dlYmShbpn23b6iujEQEAjgAacTZkDjiM+xG7rmvbtqoq8fNJYJIk6mlTXZjnufoa7fqS3tOIqvmsxLRCcIpGXH2sOY5jkZL6FhrS933btvaJjka0jkbGmgEAjgAacTZkDjiMa8Q4jsW950gfGUF2/IVFUcRxHMex4+FzNGKe5xJnmqYqwnbXiFVV5XleVZUmfiQZjkaMokgzB40IAHAE0IizIXPAYUQjpmmq/kIrfdRNWFWVykSVVo7LrR8aa26aZmTSoXO7SDcbYsd2VySKIh1b72f6EdGIAACHAo04GzIHHEZMIssy3WJGZJBoNdVnXdfpbyvaxjVilmVRFEVRpE7KflQj+iFZlk2ZYihYJ984SZJYjejMR7Si1tGIVivrxMprUAcBAAKARpwNmQMO4yYhS4/LsmzbVifq5XkuC4HtemFZDqwXS6DsIyiBorHatnV8deJT1EUhshui42Usy1KFV13XszZctCPa49R17Vwp67Kdk13KspRA+/qS7LIsq6rCjwgAsDtoxNmQOeAQ2CScYeLp0wqLohABd8AdHGdBHQQACAAacTZkDjiEN4m2bcXpaD2OzwN1EAAgAGjE2ZA54IBJBIYMBwAIABpxNmQOOGASgSHDAQACgEacDZkDDphEYMhwAIAAoBFnQ+aAwwOZhOzLOPEIvsPyQBkOAPC4oBFnQ+aAwxSTOMLKEl3O7OxEsxbO+YHbRUIdBAAIABpxNmQOOIybRFmWaZpGUXRHzE3T3HejT5IkVn6tfsiKsyf2XLquK8syjuMpkVAHAQACgEacDZkDDo5J+GeE1HV9t9Rb5VRl2Z7aCRk/y2QudV0v33ZxotCkDgIABACNOBsyBxxGzmsWdteISZL4g92rxKygEQEATgYacTZkDjjcoRHbts2yLE1Texhd3/d5nqdpaj18ouS6rpOT67qua5pG5Z0ecyyBdV2naeqfxTwoB6drxMvl4qTTRzRiURRpmtqD/qqqStM0TVM5J3AksEcjAgAcCTTibMgccBCTKIpCJI5MqsuyTOf/+RpRpwPaUWCdMth1nQo4/WHFk5V3+juKIhWXzuMG5WAURRNXruR5fnPNjbyjpF/EYt/3coq0pl8U4WCg/olGBAA4CGjE2ZA54DDXj5jnufUUyr+aprHrSJIkEQEXx7GVjMKgRrSBaZrWdT14/Xjg3dix5rquJfI4jlVctm07EiigEQEAjgMacTZkDjjM1YhZlvkCzpnPp9dEUZQkSZIk1t92UyMOPsJhU40o7zsobUf0LhoRAOA4oBFnQ+aAQwA/Yv/18PFNjai36xOdmX9t2667/Y2jESVy/IgAAI/LcFP7zTffvMAVvvnmm8CFBAfn5ZZkGZ+PqCs87HxEvUAllCwH0UBxE+Z5rrMAoyiSQH9suve8d/66lhE05vF31DRfm3oosnUwUP9EIwIAHIQHaGrpD+DgjJtoWZZlWWZZVpal6qGu64qikKXK9mJZ+KJeRpFTordkdYvKrCRJ0jRt27YoCtGIIhwdJ6VNhobLZdNfUB40fo0suJaXsj7LpmnyPHdOdvEDZQ9tCZTl2yPPok0AAAjAAzS19AdwcA5iojfnFxZFIVJv+UaG+3KQDAcAODcP0NTSH8DBOYKJisfx5i6G5+AIGQ4AcHoeoKmlP4CDg4kGhgwHAAjAAzS19AdwcDDRwJDhAAABeICmlv4ADg4mGhgyHAAgAA/Q1NIfwMHBRANDhgMABOABmtqff/557yQAjMF+ooFhj1IAgAA8gEYEAAAAgMCgEQEAAADABY0IAAAAAC4PoBGZjwgAAAAQmAfQiC+sYQQAAAAIywPILzQiAAAAQGAeQH6hEQEAAAAC8wDyC40IAAAAEJgHkF9oRAAAAIDAPID8QiMCAAAABOYB5BcaEQAAACAwDyC/2B8RAAAAIDAPoBEBAAAAIDBoRAAAAABwQSMCAAAAgMsDaETmIwIAAAAE5gE0IuuaAQAAAALzAPILjQgAAAAQmAeQX2hEAAAAgMA8gPxCIwIAAAAE5gHkFxoRAAAAIDAPIL/QiAAAAACBeQD5hUYEAAAACMwDyC/2RwQAAAAIzANoRAAAAAAIDBoRAAAAAFzQiAAAAADg8gAakfmIAAAAAIF5AI3IumYAAACAwDyA/EIjAgAAAATmAeQXGhEAAAAgMA8gv9CIAAAAAIF5APmFRgQAAAAIzAPILzQiAAAAQGAeQH6hEQEAAAAC8wDyi/0RAQAAAALzABoRAAAAAAKDRgQAAAAAlwNpxB9//PHz588TL/78+fOPP/64aXoAAAAAnpYDacSPHz9+9913vkz05yN+/vz5u++++/jxY6CUAQAAADwZB9KI/RWZ6KxrRiACAAAAbM2xNGI/JBOtRkQgAgAAAATgcBqx92SiakQEIgAAAEAYjqgR+69lomhEBCIAAABAMA6qEXsjE19eXhCIAAAAACE5rkbs32Tiy8sLAhEAAAAgJF9pxNfX1xcAAAAAODuvr68zNOLLy6HdigAAAACwCjdVHxoRAAAA4OlAIwIAAACACxoRAAAAAFzQiAAAAADggkYEAAAAABc0IgDA+rRtu3cSAAAWgUYEgEclTdPL5ZJlWZZlcRxHUbR3iv6PKIriON47FQAA94NGBIBHpa7ry+WifyZJchzvXVmWVVXtnQoAgPtBIwLAo2I14t3qcDtZ2XXdKtcAAOwCGhEAHhWrEXVgN0mSy+USRVGe55fLRcIlMEkSGZIuikICoyi6XC5VVcVxfLlcyrLs+75pmviNuq71cRpoB7X9QLldBsFtatM0lQFoDZe7NFXHcYICAPRoRAB4XOq6fnl58XVbnudxHLdta2cEXi4XkYZt214uFxFkEkOapn3fp2kqGjGKIpGGVoNmWSa390aPDgYKURRZjZimqf6ZJIncJfHLs+wFAABHAI0IAI+K1XBJkth/RVHkeObszEV1JTozGiVENKKgGi7Pc71LB4gHA/URVvNpPH3fV1UlilaeJYFZlh1qzQ0AABoRAB4VX+EpsuTZ6jZHI4qAG9SIulZa0Eh0SFr8jiOB/ZBG9JONRgSAI4NGBIBHxVF4RVGIr65pmiRJ0jS1zkV7pXr1fI3YNI0NkdHnvu9V8MlQtdw+GCiM+BGLopCBaTQiABwZNCIAPCplWaqeq6pKfnddJ6PMXdfpMpTezEeUAWIJHPRExnEs4lJ8hBIoi2D0t4xiDwbqn1YjFkURRVHXdW3bRlHUNI2kH40IAIcFjQgAj0r2NSLX5HdVVVVV2cFi0YhxHKuqK4pC73X2MpRVL3pl/7Y8RdyTevFgYNd1NlUaQ1VVcqUIRJtUvYUtFQHgOKARAeApcKYnAgDAOGhEADg/6jLcOyEAAA8DGhEAAAAAXNCIAAAAAOCCRgQAAAAAFzQiAAAAALigEQEAAADABY0IAAAAAC7zNOK7d+9eAAAAAODsvHv3boZGfMGPCAAAAPAE3FR9aEQAAACApwONCAAAAAAuaEQAAAAAcEEjAgAAAIALGhEAAAAAXNCIAAAAAOCCRgQAAAAAFzQiAAAAALigEQEAAADABY0IAAAAAC5oRAAAAABwQSMCAAAAgAsaEQAAAABc0IgAAAAA4IJGBAAAAAAXNCIAAAAAuKARAQAAAMAFjQgAAAAALmhEAAAAAHBBIwIAAACAyzyN+O7duxcAAAAAODvv3r2boRFf8CMCAAAAPAE3VR8aEQAAAODpQCMO03Xd3kkAAAAA2A004gBFUTRN0/d9lmV7pwUAAABgB1bWiE3TJEmyNFG7UlVVnufyu+u6NE3XjT/P84XSsyzLNE3jOF4rSQAAAAAOizRiVVXO1U3TTNcu+47niqfQx0l/URT+ay6hruvl7sm6rqMoWiU9AAAAAD6LNOISrdM0TV3Xd9++HHUWWqwTUVnXY4dGBAAAgOOzpkZs2zbPczs42zRNlmUSXhSFhldVFUWRTPuz3kS5Xv12XdeVZSlPqeta1FvXdVmWdV1n4xy80qaqLEsNqes6SZI0TZumadvWvoIEOlkwXSOmaWpfcxDRiE3T5HnuPKsoCsmum4FoRAAAANiUezSiuADruk7TVH7oBb52uVwuIpscmZhlmeNHLIpCLpCYNTyO4zzP27aN41ikXhRFogLrurYCzr+yaRqJqus6O1HymjNvUA5GUeRItGukaXrTRyhpFh2cJIkK4iRJ5ClW0Q4G9mhEAAAA2JjNNaKqLkeW+RrRUXv6+3K5OBLN/jdJEvXGjV9pPZQbacQpWAUsHs2+74uisL5PycPBQL0RjQgAAADbsfJ8xCUaMYqi8o04jlX5+brNUX4aj3+ljTNNU5Vc1zTiwrHmKdhHa3Y5uSFPHAx0bgQAAADYggNpxGtSbFwjii9zypVOOgc1YuA1KzpWbn2c/ZvLcDBQb0QjAgAAwHYs0oj+5jXTNWKe5yKAdJpdHMeq9uzMxUHlp4+2j/OvzLJMNV9VVTpkrPMU/WUrS/a+cVTdIHasWadgtm2r0yXbtpULBgM1EjQiAAAAbMeae2iLE07Wi4iGs6PGRVEkSWJlpQz+WlElaz70mJOmaSSGsiztEHAcx6KuZIHwyJV932dZJnHaNR/6dH8Z8pI9tOM4vrlmRVY0y1xD67OU5zo7bA8GlmWp+Xxtl0cAAACAJTzkWXxbHzGiInX1Q1YAAAAAHoLH04hylMvNbQgXsu8ZMAAAAAD78ngaEQAAAAC2Bo0IAAAAAC5oRAAAAABwOa1GlAmFLPsFAAAAuIPH0Ihzj8LTnWLyPN9CJq6yooVlMQAAAHBYjq4RZYPAy+Uy/RZnF0bdhnotZMPFu2/vuk62clwSCQAAAMCmLNKIW29Ao0zXiFVVOdqrqqp103ntHL9ZLBSaAAAAAJuy8nnNGzFdIyZJ4g9Mb3fg8t2gEQEAAODIrKwR8zyXM+40pG3bLMvSNK3rWk7Dk02w5b9VVelYcNM0cqW9XfA1YlEUcnCfc8LeoBycrhEvl4sToY9oREmAc5hemqZpmtrTBQcDezQiAAAAHJt7NKIclJxlmUyqy7JM5v+p2rMDvqrP7KHDVrTpb/3hO+ocjahP7L3phoNyMIqiiStX8jy/uT6mrusoiiQBIhb7N4GryRNFOBiof6IRAQAA4LCs5kd0hF0URf3XutBeMKgRRZzVdS0OQvsgRyPmea4OPGd18EI/4hTsi9R1LZHHcazism3bkUABjQgAAABHZk2NmCRJ+Yb8K8uyuq71gnGNqNLwph+x7/uiKOI4juPYcRCG14iihp1HqEa8lgw0IgAAAByZNTVimqb6p7j3rMNvXCPKvD3/SsHRiKoLHeecPNGZ+de27brb3zgaUSLHjwgAAABnYs39EeM4Fq9h13UyS88KI6uK9Mo8z2Vun128Im5Iu3bE0YhW8/k+Qicky7LpW3BHUaSOz2uoLuyvTz0UFTsYqH+iEQEAAOCwrLyHtkxAtPKuaRpZ/6sD0BKYJEmapm3bFkUhTkdZClOWZdu2ej5KVVUqGdVBWBSFBvr6ryxL3RCxrmt/lfQIkqTxa7qua5qmKArHZ9k0jfhNrRb0A2UPbQksy5LTVgAAAOCAhDtnZZVtBSdSFIVIPXx1AAAAAHcQSCPK6LPdswYAAAAADsvRz2sGAAAAgPCgEQEAAADABY0IAAAAAC5oxF73qdk7IQAAAABHYU2NeJz1KNNTogufnT1rAAAAAJ6Z1TRiWZZyKt19NE1z7fbsjYlH6pVlOfFKZ4PDdY9jUdI03ShmAAAAgI1YpBF1q2ph4bHIg7enaaruvaqqnHP2ZkV187Kqqpw3WoWmaeym4uNXrv50AAAAgDtY7bzmfgON6B/HvKJGLIrCV4QLX2Eh9sBrAAAAgB1ZWSOWZZmmqdU6GuKciVcURZqm9uA+OcQ5y7IkScSjJif7DSYrz/M0TR2Rl2VZmqbOWLMkwDkuue/7JEn8Y/ema8Q4jqdIOkmMfQvZS1xfXwLlyL7L5VKWJQf0AQAAwO7coxFF5cgEQfkhmuZyudR13fe9nEfcvx3WLPdmWSb/ld8qg3SuXhRFovm6rhOtJpH7aUqSRG7XKyVQ4reBmpLe03+DcjCKookDvvb86HGct6jrOo5jSb8dSb+WJAAAAIDwbDLWbI9m7rqubduqqsRNKIF5nqt0U7FoFdKIRmyaxi4BUaejXfKiUdk4xXvnXzP4Civia0T90+rmjZ4OAAAAcAeba8Q4jkWZOXqoKIo4juM4VkearxEHx5pt5BptXdeDGjGKovINZxWzkx4/DWuBRgQAAICHY1uNKLMD9WLVQ6oL7aoUXyP6G+KUZXnNj+jf3o+qLjsOronZYpOaOzQi8xEBAABgX9bcQ9vXiHZ4N03Tuq7Fk2el2IhGlCtVZerwtJ2PqFHpWHZRFFEUyQVlWeoFN1cxZ1nmr2IZedlr62kcpmtEXUYzca8cAAAAgI1YTSNWVaVrh8uy1FUpMl5clmXbtiryiqKQayS87/umabIsEwVpo+rflsg4sklXB9tAmeZY13VRFOqKk9iKovD1X9u26kqs69pZeT2OpnYcGePO81zTLynvuq7rujzP/VfYYo9GAAAAgFk8+3nN6tqc6BQEAAAAeAaeXSMCAAAAgA8aEQAAAABc0IgAAAAA4IJGBAAAAAAXNOL/v1njxCP4AAAAAJ6BZ9eIupw5z3NkIgAAAICwj0Ysy1K2CcyyzDnsZCJt214ul4Wqzjmdb4tDVpZTlqVz2AwAAADA1izSiP5uz1NEm3PknaPMpp90MmvL60Gcc1aqqgq2f/WU/beV5W8KAAAAMIs1z2vu+36KU9AeRtd/LSvLsrRn021KURQ3T+fbjmP6LAEAAACE1TRi0zR5nl8ul7Isy7LUo/DatpUBZXuYXhRFztl6XdfJOctybJ2uI8nzXHRbURRxHOvBfXme2xHYpmnkvOYsy5Iksbozz/M0TeVAPMd/6fssp2vEOI6nCOKqqtI0TdNU80pCJAc0EyRQDoyWV7DhNlVVVckZ1hKtzQHJZ3lN5lYCAADAEu7RiDqVMI5j+aGK0NdYVu6oTpLhZl8pZlnm+xFFOPZ9n6ap/e/lcnEuE79g13WaDDkYWp9oldOgHIyiaKK6Kstyynixyjg5SHrk6XVdi/hz/lvXtTMf8XK5SFRyGLQTYZIkwXyxAAAAcFZWHmt2pE+e53Y819E6bds63rhBjehowWvh9tH620bopG1QI64+1hzH8aDoHNSIg0/3NaJeZkftB18ZAAAA4D621YiOXrkmy3TMd1DfXNNtUzRi0zSiQdWheC1t48+6m7ZtZWTZyatBjejnZz9ZI4qTtes6ZjoCAADAcrbSiDL6POhHrOvaTgRM01Q9batrRNndxnmioPJRcRZcL0eH4HsvK5yM6hdrRBlJZxoiAAAArMLK+yPqQhB12tn5iDJ5bmTvG11rbH1+SzSiCKwoimTqpBOD7/WcvvPOYIQOdV3rfEHZEtJ5dNd1qokXasQ4juU14zietbEOAAAAgM/6e2g7DjNZsCyrlTVQRn6zLHPGf+V21WpN0+hl1kPmh8uqXtFGsjhGwq0KlDW/9lkyECy/rZ6bgj5uhK7rJDec19cE23XN+kbW++iH27eTf3VdZwVo27bsuQ0AAAALOflZfHEcq+QaVHV1XUvgTafgkbELnO2ybgAAAID7OLlG7N98liu8bxAAACAASURBVI4n8nyIx9HuuQgAAABwN+fXiAAAAAAwFzQiAAAAALigEQEAAADABY0IAAAAAC7zNOI333zzcmp+97vf7Z0EOAoYAygYw5GhdEDBGNblm2++maERz83PP//84cOHP/3pT3snBPYHYwBlL2P48uXLv//7v3/58iXwcx+Ln3766fX19ccffwzzuF9//fXl5eXXX38N8zjll19+eXl5CfaaD0rgqvrrr7/+0z/903/913+FeVy/n/mN8Cwa8R//+Mfr6+uXL18+fPjw97//fe/kwJ5gDKDsaAwiCw7VHxyNqqq+++67L1++fPvtt7/99tvWj/vy5cv79+9fXl7ev38fUrt/+vRJn/vp06dgz30sAldVMYZ/+7d/+/3vfx/A9vr9zG+cZ9GI3333nWym/fHjxw8fPhynACA8GAMoexmDlQVY4CBWGv71r3/9wx/+sPUTf/311x9//FH8eSG1+x/+8Ie//vWv8sGAK/EagauqlMX79+//+7//O4Dt9fuZ3zhPoRH/8pe//PDDD/rnTz/99Msvv+yYHtgRjAGUHY1BZcGh+oND8cMPP/zlL3/RP7f2HokX59OnTy8vL6Lgw2j3v/3tb99//33f9y8vL1++fHl9ff3HP/4R4LmPReCqqsbw/v373377LYDnci/zu8n5NeKnT59eX1+tAz/YyAUcDYwBlB2NwcqCQ/UHx0GzSPn48ePr6+t2T1Qf3svLS9/3YbS7FYXy3DAe08cifFVVY3h9ff348ePWttfvZH5TOL9GdD5GBb8BgmcAYwBlL2NQWfDbb7+9f/++P1J/cBB8TSD88Y9//J//+Z8tnqhenP6tkw6j3X/55ZeffvpJfr+87UIiumTT5z4WgauqNQYd4N7O9vr9zG8KJ9eIMuV58F+bFjkcEIwBlB2NQWWBasTj9AcH4VoRbJdRdiKgarWttbvzOvpcXImW8FXVGoNqxE0r6S7mN5Eza8TxuR2fPn369ttvP3/+HDhVsAsYAyg7GoPtaVQj9ofpD46AM/PMYYuJaNaL05tOemvtLnNS9c8Xs5vx999//7e//W2j5z4Q4auqYwyqEfvNJkHuZX4TObNG/Pnnn3/++eeRC/785z+zQ96TgDGAsqMxWFlgNeJB+oPdudnrOx3qKjiria1W2067+0Ol9rkBJsA9BOGrqmMMViNuYXv+E8OY33ROqxF1L6Xxy9gh7xnAGEDZ0RgcWeDogCP0B7tju+RrrCsL/I7fdtIbafdB99jL16eiOV7GJyR8VfWNwSmF1SXpLuY3i9NqxCltTc8Oec8BxgDKXsbgywJnotUR+oN9md4Br7iqw9+S0NFqW2h3u1Tl2nNxJYavqr4x+Mtl1l1RtIv5zeKcGnF8RosDO+SdG4wBlB2NwZcF/mT83fuDHZnoNBLWWtM6OHrodNKra/drETrP7Z/bHsJX1UFj8DXiiuupdzG/uZxQI17bN+Ea7JB3YjAGUHY0hsGG3teIu/cHOzJ3xHCVodjBc0221mrXUu4/92ntYZeqOmgMg9vurDUNYBfzm8sJNeJgoY7DDnlnBWMAZUdjGOxUBjf1eE7X0c2lCT7LRxivLUHYVKuNWJT/3P5Z7SF8Vb1mDIMpWWV0exfzu4OzacSRvZTGYYe884ExgLKjMVzrvQZH057QdXR3j7tQP107HHlTrfb9999f28ll8LmfPn368OHD8uc+ELtU1WvGcG0Ue7k97GJ+d3A2jfjhw4eXe/n222/3Tj6sCcYAyo7GcE0WXJtx9Wyuo72K5sOHD4OjmS87abXB5z4hu9jDNWO45uFebg9HM79rPJdRUglBkcPa904FHIJdjOGaRnxC19EI4RvtvboJuqcpBM6lO2ZBLORoZnCs1GzN0XIfdgSNCMqhNCJY0IhgQSMG5lip2Zqj5T7sCBoRlF2M4dqEJLCgEcGCRgzMsVKzNUfLfdgRNCIouxhD+O7nEUEjgiVwLoU/o/VoZnCs1GzN0XIfduTbb7+9tsAQno1djAGNOAU0IlgC51L4CSFHM4NjpWZrjpb7sCMTD3qCZ2AXY0AjTgGNCBY0YmCOlZqtOVruw46gEUFBIx4WNCJY0IiBOVZqtuZouQ87gkYEZRdjuOMwiScEjQgWNGJgjpWarTla7sOOoBFBQSMeFjQiWALn0t2HvtzN0czgWKnZmqPlPuwIGhEUNOJhQSOCBY0YmGOlZmuOlvuwI/TQoOxiDFjgFNCIYEEjBuZYqdmao+U+7Ag9NCi7GMMf/vCHv/71r4Ef+nCgEcGCRgzMsVKzNUfLfdgRNCIouxgDsx2mgEYECxoxMMdKzdYcLfdhR9CIoKARDwsaESyBc+m33357//59yCcezQyOlZqtOVruw46gEUFBIx4WNCJY0IiBOVZqtuZouQ87wg7GoOxiDGjEKaARwYJGDMyxUrM1R8t92BE0Iii7GMP79+9/++23wA99ONCIYEEjBuZYqdmao+U+7AgaERQ04mFBI4IlcC59+vTpX/7lX0I+8WhmcKzUbM3Rch92BI0IChrxsKARwXJ6eziaGRwrNVtztNyHHUEjgoJGPCyn1wS7P/exOL09HM0MjpWarTla7sOO/PnPf/7Tn/60dyrgEIQ3hi9fvvzrv/7r//7v/4Z86CNyek2w+3Mfi9Pbw9HM4Fip2Zqj5T7syF/+8pcffvhh71TAIQhvDL/88su33377448/hnzoI3J6TbD7cx+L09vD0czgWKnZmqPlPuwIGhGUwMbw6dOn9+/ff/ny5fX19ePHj8Ge+4gEbrS/fPny//7f//v8+XPIh8pzf/e734V/7sNxbnvYy/xGeC7NhEYEBY0ISmBj0JOa//73v3/48CHYcx+RwI32Xv7dX3755fe//z1+5Zuc2x5+/fXX19fXP/7xj2EeN4Xn0kxoRFDQiKCENIa//e1v33//vf7JeT/jhGy09/Lv4leezont4cuXL+/fv//06dOh2oTn0kxoRFCcrhqemWDGIP3NP/7xDw359OnTt99+e6jRpUMRstHey7+LX3k6J7aHX3/9VRyWnz9/fn19PcimB8+lmdCIoFRV9d133+2dCjgEwYzhl19++emnn5xA7RvAJ1ijvZd/F7/yLM5qD+pElD+P0z09l2ZCI4JynEoIuxPGGHToyv8Xg4zXCNNo7+Xfxa88l7Pag/+h+NNPP/3yyy8bPW46z6WZ0IigoBFBCWMMOnTlwyDjNcI02nv5d/Erz+WU9uA4ETXww4cPu386PpdmQiOCgkYEJYAx3JzyyCDjIAEa7b38u/iV7+CU9nBNff7jH/94fX0dTEkwnkszoRFB+fjx4+vr696pgEMQwBg+fPjw97//feSC33777f3795um4REJ0Gjv5d/Fr3wH57OHQSeisrtT+bk0ExoRFLpkUAIYw822fnB4C7ZutPfy7+JXvo/z2cPNluG7776rqmrFJ87iuTQTGhEUNCIoYYxhZKBqZHjrydm60d7Lv4tf+T7OZw/ffvutXRwT4ImzeC7NhEYEhSYYlDDGMDJQNTK89eRs3Wjv5d/Fr3wf57OHg1vCc2kmNCIoaERQghnD4EAV27mPEKDR3su/i1/5Dk5pD0e2hOfSTGhEUD5//vzNN9/snQo4BMGMwd9lzd+JDSwBGu29/Lv4le/glPZwZEt4Ls2ERgQL9gBKMGNwhpYYUhwnTLns5d/FrzyXs9rDYS3hufpINAFYsAdQQhqDDi3tPpB0fMKUy17+XfzKczmrPRzWEp6rj0QTgAV7ACWkMejQ0u4DScfn9P5d/MqzOLE9HNMSnquPRBOABXsAJbAx/PDDDz/88MPuA0nH5xn8u/iVp3NuezigJfxfdr++vr7A47PWcRHYwzlYxR4whi3453/+58BPfMSDhV6ewL+LX3k657aHA1rC/2V3yKyH7VirHLGHc7BKOWIM5+ARyzFwmvfy7/7www//8R//gV/5Jqe3h6ONMKARzwYaESxoRFCWl+MzeJTD+3fDP5fhpumEt4dDjTCgEc/GWuWIPZyDVcoRYzgHy8sRSzgHdBNgGSlHNOLZoPKDBY0IChoRBLoJsKARnwgqP1jQiKCgEUGgmwALGvGJoPKDBY0IChoRBLoJsDywRsyyLI7jNE2zLNs7LY/BKSt/13VZlmVZVlVV3/f29yzato3juOu6kWuqqorjuK5rJ7woijRNL5eL/68jg0YUiqKwNnO3CT00aEQQTtlNwN08qkaMoqgsy77v67q+XC4rxrywb5BUHZOzVv48z6Mokt9VVaVpekckYkhN04xfFkXRNSGIRnxcoihSE5KvjvHrz6cg0YgO45+LPm3bbpSSwJy1m4D7eEiNKB5E++dafXPTNAu9kjZhR+Oslb9pGv1OWNEYBkEjbhHJ7kRRdLlctO7fbASOXM3vA41oieN4ekdQlmUcx/qN8eictZtYTtM08Rs3vQmn4SE14uVyKYpi8F/OsFGe52madl2X53me54NXiudPnAdRFEnrYC+WK/WJcmVZllVVOUNUSZJIT3PM4e8TV37VZ7albttWykLrs/wpjsY8z7VM8zyX4nOilXDrNBKNKCbheA4GNaIY3jF9DGhEJY7joijsl4b8EBOyrYE0KVrN53qbDgsa0XK5XGZpPuk7tktPSE7cTSxEHQRVVZ2muG/yqBpx0GGTJIm4kZIkER0gA4hxHFdVlSSJioA0TfM8r+va1u26rtM0TdO0rmtVFVEUFUVR13We5+o8SNM0iiJRipfLRRSASAcxo2P6k05c+fW7X8uoLEsti8vlIjpPijiKoiRJ8jx/eXmRkmqaxkqEvu/bthUzE3NS0SCDkmVZ5nnuTHJwzLJtW7lSUnLA7040oiJmI5W6f9OIdV1L0yElKNW8aRqxqMNW8/tAIyoyX2XWFCY04nbxHATp3PXPKIrON+FkkPNoRKcIVbpdLhf51rczF20BWyeB7wKM41jicdwMOulNRKT8ruv6yC3FiSu/TEmsqkpLsyxLKSPRanYYUU3C6jZnYqssYZHfIivlty3uKIqs8ThmKTJUH+o7KXcHjahIWcsnn85HdFoJW4LrzoE+AmhERdwEtjrL8GJRFHEcWzPQwcckSY7c8s/ixN3EEqyPqe/7KIrSNE2SRKYZdF0nvw/oC1jIeTSi0w1r/62tuRUBIiidPr4f0oiylFUck1YjWseS/kYj7oVMSUySxFbRNE3Fv+hMNRssI3/xk3iOJRKrEdX2bNH3nlmKgUkXIj9WetfVQCMqWjp2qwT9zuw980AjbhHDQRBjsFMSpfSls9BvPx1qkMAjt/yzOHE3sQSntVfHgY5VijPCURQn4CE1olNaRVHIWhPbDau/Z1AjihtJ9J+t245GtK2AvR2NuEo863K5XGzPbT/7HD/iFI1o3dL2llka8ciL3Hs0okGbjqqq9IvCrnNHIwaI4SBIHbejB7Zh145G3EgaeOSWfxbn7ibuZlwjHnPG+So8pEZ0hpWlxtrFraLt5PegRrRq0jb36owU3WkfZKe1jWhEia1t2wN+T5y78sssQ/3zcrmoRJMy0rKbohF1SqveIrHZ8Ue1B/3TakTr2LaD4McBjajYBsHObdVSs3NSe+NivG+jpQOCRhRkMqJMLrd9h//FOOXL8xE5dzdxNzKUrH/KWHO/we57R+MhNWL/puJlHFA7ZpkvItVVAmVhgTT0MliszkW50kqB/k1cOi4oWcgia5Zlm2UZRuy6TtY32b2XRakccGCxP3vlt2vP+7cPCfnoj+NYJKP8KeF2Rapugq1SsmkauUyM4XK5iJ1IbI7lyDJnucYqCblYrDRMJswCjSioqcifsl+B/Jbic6Yi9W/TGGRFS+DUbgQaUUjTVJ3H6kge1IjSLziBJ+Dc3cTd+AsedB0kGvG4hT04P3T6pNFrVzp+47lu5MO6nZ+w8i+cQTzRQsY5tz08kDHcx7XiO2yx3gcaUXDWrop/YVAjyrQE+dRUr8EeSV6ZJ+wmJqKDSHbvGzTijYvggaDygwWNCAoasX/Tf+JFlp2xZS2CLEkpy1K2O4jjWGaeiG9JnM1pmp7DqUw3MYIuY5c/ZUBJBhsPPvv8btCITwSVHyxoRFDQiCDQTYAFjfhEUPnBgkYEBY0IAt0EWNCITwSVHyxoRFDQiCDQTYAFjfhEUPnBgkYEBY0IAt0EWNCITwSVHyxoRFDQiCDQTYAFjfhEUPnBgkYEBY0IAt0EWNCITwSVHyxoRFDQiCDQTYBlkkZ89+7dCzw+7969W8VosIdzsIo9YAznYLkxvKAJTsFa5Yg9nIORcsSPeDao/GBZpRwxhnOwvBz5WjgHuBLAMmIPaMSzsVY5Yg/nYJVyxBjOwfJyxBLOAd0EWEbKEY14Nqj8YEEjgoJGBIFuAixBNWLbtmVZ6lmHgamqauGJinVdZ1lWFMVaSQoMlX8Jclrr3qlYk3NrxK7r6rpuDHun6P9omuZoZ/uiEUGgmwDLDn7Ey+WyYmzTKctSDmtfQpZlyyPZCyq/T9d1E6+MoijP800TE5hza8S+76Mo0vJN03TfxFjSNI3jeO9UfAUaEQS6CbA8kUYUL+DCSNCIK8ZzBB7XK7yc02tER4edzA28LltrxKqq8jyPomhibDLss1317LpOBoXKslzFfbAiTdPsNdrWh+omyrKc9aX0zPZQFMWO6dlQI7ZtW9e1H+5oRHuNM/7SNM3EZn2Kg0c1op+qwaGowUA04s14pBD9smuaxsn5rus0h52sHrScQab79uq6dpKU57lfmmqEThqqqnKcjpLmQXOSB01/i10IphGn5INcs26V1x7opre4bduu69q2dezwmjEMpnN6M1LXtT/W7F95rSptQRg/4kQHgQjK3usdp3v9p5BlmRZrXdfH+VxsmmZHN3MwV0Jd1xO/GZ7cHoqi2HEYZKlG7LoujmOZ59e2bZIkUmxpmlZVVdd1nufOLEDbTHRdp1biWEySJNKSTsmdy+Vys0Truk6SJM/zuq7jONZmV5NqHzQY2KMRb8XTNE0URVLZJA8lXEpTikByvizLOI6rqoqiSOqAXCw3ShW9WaZN01wul5s9aNu2kiR5nN4rz7V9sKRfnp6mqZa+hmucRVFYc9Jwtds4jnd0BkwhgEaUQpQyFQHUdZ1mrBa6tANZlklncLPKTyz3OI7F6mydrapK7pVUSXuVJEmapuJF0NK8ZgyDTZMYrRiDSr3BwKZp0jR1mhG/wblWlTbiUBrR9taK/5G5EOcph5qxuiMH1IjYw47M0IhVVWVfI81WURSi8e1EbG3p/BFep5mw/av+ViUhUa1SWiJQ5Le27/oW+oLXAgU0osYjn3QW6W6t6Je8attW1Z7WQ/2vFLrzp7DWx3Rd1/qhYr9YBqcf2HmH9jvV0Yi2O/dfasXEb8eKGnHQGOSjUa+0GRJFkWh0+1/NbfsJtwTViP6XnuNCzrJMDSPPc02YbwzXmiZ9hHVGDgb2XjNyrcHxq9J27KURm6axr9+/aeiiKJqmUZPQj0kbOIIV5dewmkDLVD4exK+sIw8y0ClFo1dKochT8jy3r1CWZZ7n/qiFfFLaQBnWtIFt2w5+JkkVs1+z8qc111XYVyNKJtuyW24PbdtOaY0H7UGUqLRm8qPve3muKh9NkpSauCRs6U+3Bz/w2krZI9jDjLFmKQCbX5JN8v19h0aUxl0GX/wY7sO2s2qdjunIn4OBAhrxZjyaXTbDpeYXRSEl21/XiKIeBEeWLUG8eo4zZrDrvdaa+BpR79XGRcx1PJ7jsLUfUd2H0s7aim/ddYJTy1Yp95Gx5iiK7NeCM8w0IvSvNU0yucppnQcDe68ZuZYVg1VpI9bSiCKtLDbzncZfxwocHT9oALOsQsYoxq/JskxKUNy9Gp4kidiGJkkHPSRQLUfaNPGUq9zRwTTnc0L/q8/SK50hVF88aVR2XE5Hz9aVBet2E1L3LXqB/5paEM7w40J7mK4RfXuQIQ6ZFqUKR0YV5EPCftBKZXcGQ6bbw2BgP6Q6DmIPMzRikiQiY+VPKRLJl/v8iFv0r2jEvTSi3fBolh9xXdq2dWZJr64R+76XT948z48/VBFAI16rLEVRyMeAhmyqEQUrVpIksT7OWRpx5ImyLMN3GDiBaETh2qDBco04BdsWOZ68OI7zPNeU2/y3gkP0hI3TOhSt8LXGptGqeui/Htl0xJPjr9J/bWQee2lE+4Hdm9fs97YHWV7jOP71Als6zpdnP98e/MDeay6OYw8zNKI4ftXK7VeRJHdKM9G2rf0U05xt2/bmwNOUjQ8dt5bk8uAoz7Whnx6NOCEe31LtV5HULulIrvkR7YDCzcRMKXr7UTWoBqyNLfQjSu9Se+tjDsjWGtH5fNeSki9y57/OSPTN504pdxtn13V6i7TUtpFxVL6G+8Yw2DTZ4lbDGAzUx00Za35EjTiO0/hLnyrY0eHAmmDwX1avOPlvNaITQ5Zl4tqR4UXt9eUFnaEMaS58T7MjnpynbP0JsddYc13X4sFVe9B/7W4PuujCv3L8k3KWPQwG9kPNxUHsYd66ZqdZlxEZkWIytb9/m+pxuVxs65llWZIkkgtWhlu37fiju667XC43+wwxQX8lijTQvhb0A+VDZ635keEJUPml2usAilSJqqpEJsrkG+mDZR6CePLtFJy6rmVYR+rVeErKsrxcLjfno+jwQe1NTZOEaRstA9xVVfmLsmX6i4bbCp+mqVhp/TZ3JMuyOI4P/jkRZs2K5rDUGukXJRtlTYZcKdlb1/WUgZIp5S6mVVVV0zTS+MpDdZFgWZaq+9VC7BLCa8bgN01itGJg2dskocHA/koz4jc4g1VpO3bRiNe+x3bRBE5x2DHEWRpxJJGyqY2jAGRe1shYc/b1fM3H8iOO4GvEa2+xrz3IGOk1zTr4UTcxkYP24AeOfFL2j+JH7Idm/EwXUss9LrPWwB/fwbMR++6POEtYTy+j6UV/Lc4V7cFxXB18SmKwvW+m5LDk1RblPoW1+pvB9D9Eg7OXRrRjdho+WBw6bDfFhSzTxcavcZ6iil8GvuTLVkLst6Ud6fPTae+SSPqvtzqSryC9XW905sBY8WTXfsmEGeeWc2jE/mtP04r2YDNthGv2oMtbbcHpQ2Winfz2G/zp9nDNSHpPIx7HHrbaQxv2gj20t6Z+27inNmseD8tx9tBWn9/yqO5DxzqelgB7aIs3VxYIa7jM9FI3c/82fdl2w/ZiZwXxNW4ud+u6Tp8ia+l0mw6ZTC9eZO2/ZRjU9tY6Tc1Jp4Rbd7h4hmR1i6MLRXHa6cvin5aMsrNu5DL7dB2dFzfzWl9NwfbQ1te0HjupibYyLrcHX4z6DNqDbKytww464ixmIPYgITKVRUcYnDedYg/XjERutyul+sPYAxrxbKARwXIcjQi7w1l8IwSYD3oc6CZusvow95FBIz4RVH6woBFBQSOOIJPmDz4ssBZ0E+Oox3Hd6S6HBY34RFD5wYJGBAWNCALdBFjQiE8ElR8saERQ0Igg0E2ABY34RFD5wYJGBAWNCALdBFjQiE8ElR8saERQ0Igg0E2AZZJGfPfu3Qs8Pu/evVvFaLCHc7CKPWAM52C5MbygCU7BWuWIPZyDkXLEj3g2qPxgWaUcMYZzsLwc747h5l5ucjbPfZHPRXan08PTjrOWWfbPC/CgfbuJKa8ZzB5kf8SiKMQeDrX/0RHsAY14NtCIYEEjgrKjRrSn3o1cc+1f68o4uxWiSIQVI19CMGG0u0ac8poj12x3ApM9tXV3jmAPJ9eIsmv5lGOdTgMacYTpx3ydhsfSiHLIu5z5HuaJT8WOGnEKI93hugfkONtlH8ePGIyH6Cau2UPTNMEO9X4SVtOITdM8xLGkQpqm8rUx8STHc/AQlV+YYkvX2oK2bed+7akNyJjCrHsflwfSiE3T2MNSH6ipeRQ21YhyUploL3sWrYT7Q2ZVVclRlnpwn5yPJ+O/epkckZem6cTeRw8rG8FqRD1UTb5M2rbtuk5+9G+nC0pS9en2EE7nmDhJvJNOyRanKfMD27bN89zvqmRkXOMUx6efUbMI0E3I66ibRpvra6850R6qqoqiSM51vOlNbNt2ih/OFoTmsyjRruvEMORZ8lx7nHc/3x7khD3HHvzAifbQNI38aU8CnMsKGlFklpxIPWXUYHesUfZeyZ2YAJU/z3M9GVMmTNzh+W/b9uXl5eZxq4NHcEqlvVwu0x+Xpqk1Wr4Z1oqkKAotI+m97m4cnNY8zEScp2ItjSgqyqItQBzH0inqubeCU1u1V86yTBtn5+hkvXjWKXl6KPMIdV3HcZy9oeFyXnP/9fekRmiP05UZbEVR2GOCtSVMkkRrgQbaI3oHA/uhQ4c1KtVb/fWMms663YTIKYv8V462z/O867rL5aJG4r/mLHuYfkredI0op3KLyJFA6X3kUG9VhHKqsnxIWCE03R7UtJIk0WcNBg5m1KA9XC4XUTt3y8R7NKLTiYqil993uHBGWOjRuXa7bxnBJkTvy0Ya0Wmj1XDbtr1bfE9x6Y+U2nSN2Lat05LKt9fE2x+aLTSi36tpgzClOg+Wu7SwNuR5vuuCEUAjXi6XwY8Ep7Zqvbb6z1Z2+3v1k5Q1wq7rrNWJpBBN4z/aCg7REzZOa66ijeS3/YRWyx8M7D1N4Pir9F/XMmo6wTTi4Ee+Hz7LHlY/SVkjtInv+74sS9GOg4+2pTPLHvQatYHBwH6+PdxdU5ZqRH/i5FozRhdW/mu3N03jO4qslj8xwTSifs3cjOqatUwcObr2r+kacVBt8M1wdySORizLUlurmxrRH2QR/OLwlT0sJMB8xGvVyqmt6rCxdTO8Ruy91snp7J1HW43omLE4wHSttJqu9J5xHFsxOhjYe5rAeYo+/Wga8RrXCs7XiLPsYTuN6OO4w53VLfp20+1BPNNJkjhD0n5gP98edtOIjkNeESkmeSEfQ03TiFNBzkfXzBVvrcRj3fhpmsplVnHrEIDUoJdbGAAAIABJREFUHzldW24XT+/I7cKgJljdsI5JGI2YpqmUjvON5RSxlLvMEJIRaikC+dPpNsRsBP22lmZU4nTaU18jOpajDDajaMS7I3E0otRZ+VrQKi/TrWzTIVOLxE9TlqXjTXzmMgrGcTRi9rb1jG2od9GI/dcyMcsyO4Y4SyOO9C9t2/rdqB/oawKbP4f1I15jukacZQ9ba0RtmmS46dqjZQLltSSNJ1LmaDkqxQ+caw8hNKIIrzRNoyiSH9rW+zcPFqHqgP7rGqVXjnyl9V87Xe3t6q+a0nYMFs+1tzgZ61Z+1eVqDzqVW0pKy8WO3jr5r2ORZVla3+GU4acoirRWOM2K3+volY7PeLAZtYZ6YlbUiIPGoKMzUjqiEa0L0HEHXms6B8to1pRTuMlxNGKapnEci4tBq+o1TaDjQlOWrTgzjwdxOg7bcHVdp41b//UooTO26JixvUsicSLvr3SITo9mWzmnHmlKzqcRZ9mD+oBujlpMXK7qlKadfdh/LT9Ey8rvJElUTU60h7qurTtMZ1v6gfrnLHs4lh/RVp7e+IoHy1XWtfm+vcFXknVD0hVpAnzdee32Hj/iBvH4+Sway3qDZHKPLGJwNOLgI3wFUFVVURRJkujjbHE70V6TmP3Xtbq/0ow+iY8qjB+xf2slpAG99r3bz9SIT1JGwdhUI8qKVBmbs83CYLj0HdI7ysQVGX4V+5GVkTYSWfowZR78lG8/HeaSjknsuSgKmXYvo2F2tYTjKNFpao5GkXAnnTISIqtWneERJ7CqKhl1KctSXZsSKMNomp8jGTWRABpRUi65Zz21g695nz1MWZx0rfdRZKBSSlNsoKoqWX4nqVLr7U0rZ0t/uj2Ip1B6SVugfuC1jPLtQZInmSO95x1TAZdqRFFs9r8yZ9n5FBvRiP2bX91Ob++v+BF9l+Fcjch8xNXjGdSINlCqtORwdmXahIMv8vRj6z6NKJpV9yzQfzEfcd1IBjVibxzGIwYwXSMyH3F1DrI/otM+H7llXn2Y+yAcaou0B7KHs3qa7tGItmK0bes4POu6dlaVqz645kf0A3tv7rDzoFka0dHOfpeDJlgSj/8FL6MD+qddtH+HRrSfUFOWtvVDGtG2LNYeWNe8biTOZ54td6m/19bf9cY2HOcH65oDcBCN2L/tGyeemyNvVioex/Ntqnwojdg/iD2ox3HdU16OwAr7I2oXLls1SqCOKNnJm7KlkP6WH+Lj6d9y2cYsHb/d+UluFw+qdBt2Y6rY7MLj366wP+LW8YjTW/+0FiLrS2yZDsZgRZ795JCNQ6X41MnvzG3oPY1oHZn+amv2R9woEqsRe6PjNcOdqqdthV9nnW8AnIircxyNCPtyNI0I+7LOOStt2/qrEWXuoAbaHert7uQyAig7TPrROv4DXdwkp3L1ph+y8V+7XdFe6nmcRv2uld8ag5aXjPw6e+IPhktROk4m8S5bG5Mr9XZnVKKqqmsfA6o5iqJ4kg+GfnuNKFVb/7TFUde1s0pJbxl0Fdh6qockwYqgEUFAI4Ll2c9rPs4R3QGg8o/Aec07RjKFmvOatwSNCALdBFieVyM+IVR+sDyWRoRNQSOCQDcBFjTiE0HlBwsaEZTl5fju3bsXeHzevXu3ikVhD+dgxB7QiGdjrXLEHs7BKuWIMZyD5eWIJZwDugmwjJQjGvFsUPnBgkYEBY0IAt0EWNCIXyFLFs66cIHKP5dzL2RBI84CY9g6hono/hVnLYt9OXI3wcK18KymEQ+7+/l0dE+NiSc5zmX5pioju/lMIWTlP4c9yA85mGv1+Jfvvnttp5iJBNOIGMNNTmAMU2KY+5p+m9k0jW5xulFZPDkhu4lZUs8WvT27GTZlHY3Ytu3Ly8tDS/utN9aecjrkOPLx5B9kPJ1glb8oiiXpPAJbb6xtT9W8D9lycolRhdGIGMNNzmEMU7qJWZZQ1/XNM7GeZ8f7YITpJuTwpLqu8zyfqPbYSH8X7tGIg9Vy+gfivocXXfPDBTigb5UID6gRr52LPTG2fe1h0A8R4IC+VQ57XfjhsYVGxBju4BzGcLObKMvSHss5BafN9E9lfKpDEMIQoJtw6tSUnpEDOfdiNY048VMgz/Md3Y1d1w2ao3NwuDD9+PD7PoPu41E0opMn1w7GmG4P04/WmH7ltb55sPWZXnxT7OEcssCPBGNweB5juNlNyAGts97UyefBbF/9Y/7JCdBNZFlmBV8URVpNrlVYv5T9jzfYghU0oswSsNqlaZooiuSU3iRJ5Ou86zo5Z1nO57YOgzRNsyzLskxPaSvLUk5nzvM8jmM5Klvuzd64dqXEqZepLUrzFEWRP4tlsBvQ9NwkjuMpxirJc06CL8vSvtFIoHB8jVhVVZqmtruqqkrfXc9Nnm4PYmBxHMuPKIrkqD21MT2ze/BKTaRjD2VZpmkq9umU/sKuaIo9yBnTag8aPssedpcFfiQYg3/lkxjDFI1oz14f7Cb6t+ngUjpoxPAE6CZsZez7Po7juq6lrciyTCzcMWaKfi9maERpRqXFlx9WaTnaxRqBLUhfeMVxrJ8O9krpMPq+b5pGWu0sy3TKapqm2pQPXqn/ddyBg1Y1KAcHJdogbdtOcVdcLhddEyPJsF9C+nsw0EYyJUmDrFv5pT+29qD57HdX+qfjMpluD9Kd9H2v5/xaG7OP86+8Zg/X/DeDRuK0ayNMsQc716ooCjHgufawuyzoMYZbPI8xjHcTbdtKtjul43cT1wrd/9OPBJYToJtwikwrvlQE+a19vTBY9I8+0fkhWG2s2SktR+3p78FuQH9HUaQuBOt/9u+1Dbp/pfNEa22DprbQjzgR+2jJLttd9W+t52Cgc+N9BBtr9rsrffcpskB/O/bgPOWaXd28Uu1hlixY95vVPlqza6497C4L/Egwhjs4hzGMdxMyn0yGfQbdB/rZbN8CP2J49vIj9n1f1/U1pztFvxf7a0Rp+gXHbpxHXNOIg8tNZARK4rTf8VvMR5zIoEb0X3kw0LnxPh5CI063h2t2Nd0eNpqCNoVrsmCWPewuC/xIMIY7OIcxjHcT+qddxO13E85boBHDs8t8RPn8G5mYy3zEvbhHIw6W4lyNOOgSsPOQxjVinudqZIPdgJV3gxrRWUE53uusguMU6c240s1A5YAa0V8qfocsuMMeHBvTEp9uDzYx1kgCL2WV6Wj9fHvYXRb4kWAMd3AOYxjvJvTPpmnssLJeoL9HNCLrmgMQoJtw6tS1ySfO7axr3oXV9tD25yNqO+vMWBcj0LmMRVFIm9i2rTMo7MzjkZkN/dDKeedKaYakJ/CnNXRdV7/t1K8s2R9RZlpMuUyTpK+vM7fsEwcDhQNqRB+nu+q6zrYCNq+m24Pf/8nyo/5tYcTIleP20A9terJkS7wp9mBHVeyzZtnD7rJgSiQYw5MYw0gMTqHozOzBbiJNU2mKZaXR+BIi9kdcnTDdRJqm8kHoDA+OFKhT9DgRw7CCRuy6TkZtmqaRCm9FmOz8bDWcfx5A27bOYkaN0DbNYkxVVdlWY/BKwblS0dnrDtr4zv029RXnNWSrW+fiuq79JPmBbduOvOwUwlR+m04NURtwBg37CfbgG5ggcn/KlcKgPYwcXaNtUFEUsz5Yp9tDVVW+IploDzpaOviyUwigETGG5zGGkRjqutaCFgOQpTzXugk1Az/rbOM8tyxgCsFcCVLKWsR+W+Ffr0Wvh6LB1jzSec3OSuotkPiXnHd3ZI58EOcdWCfERnBEb5hIloMxLITzmkE4cjdRc15zcB5JI9qPUbiDI1f+uYgTYt9jOR6d02hEjGE5D6QRYVPO1E3Ach5JI8JCqPxgOY1GhOWgEUGgmwALGvGJoPKDBY0IChoRBLoJsKARnwgqP1jQiKCgEUGgmwDLqTSirHruvS0tQHi2yq+L5rCHQZ5KI2IM46ARpyNrZc66YubZuonlPO1qtj01Ytd1sqXW9HnobdvabVpX31h1cGeKWTRNk+f5jht6PW7llw1QZm2IVZalltcx7UE2jN1xEf2DakSMYQvCaMR1T67aBd11pW3bLRrz5bv5jGzhNIWQ3cQ57EF+2EZmRZYvxfM3FJvFPRoxWLnOOqzd2WAzy7J101mW5fKuZeE+twvZqPIH26dq1v7hD2EPWZbteErEFhoRY7ibRzeGmzG0bfvy8vLQe1MsOWphCss7CNkX5iGOWiiKYkk6j8CS3fWnYA+uvA/Zknmj3fWvasRgnrDpGtE/cHn1wxxHjgmaFcn5NGKwjm16g+K33ce0h0eXBX4kGMPdPLoxTOkmpjtF9t3J6JofLvCRrXdzQI04aNuPYg+DfrjAp3QuieQQGnFQzEmgPRFV/2Vb7WtbYg5qxMFzC5yj7oXplc055WUQLS3/QXLIgRM4+FLPoxH9d5dt9PsF9jDY8A1eOVj00+1hypS1ufYwGPjossCPBGNw/vU8xjClm5jovs3zfEd3Y9d1g+bheyL6vk+SZOJLTbzsqTSikyfXRiGm28P0cYzpV14TaoNe5OnFN8UeTqIR5YzFuq7tqdvyu67rPM8l15xzWu3pnFVVyZWOWnc0osw4lIUpzjsv7AbiOL7pV5AzVcVY9bxXm36bLTK1SArYdgbPoBG16O10Us0l7QjvsAen4ZNxHzE8p6wX2sPlcrk5oWeWPQwG9o8vC/xIMIanNYbxbkJmY9tSa5omiqKiKLIsS5JEylcOVIzjWErcNp5pmkoWqeuhLEs5X0d6mSzLRN7JCJ21Lv9KiVMv0yKWQ8Pl+G/H5AY1waB7YpApvYxcJklKkkRfXyYzOBYyGCgcXyPKegPbG1ZVpe+ulWi6PYiBxXEsP0Q8WBvTc9oGr9REOvZQlmWapmKf40eHjwQOMlF16Gvai2fZQziNKJVH6o/8kCyzmaK/pwdqU+JLZkcjyiml8tupvYMFE0XRig5q6Qbktx5Rr5nQv+VP7x1gb9N2Jo0oFU/qs/zous5xv8u72wyxpTzXHpyGT54ov51e/FD2MBior/DQsqDHGN6ShzFIDNKnSvcvP2xb7ZSabeFtMfnCS87j9q8U9dD3fdM0krFZlqnrV+T4yJX6X8cdOGgzg3JweqnJEdU3L7tcLromRpJh65H+Hgy0kUxJ0iDrdhMizqw9aD77vaH9UHSqxkR7EEXYm30MrI3Zx/lXXrOHa868aw3LxG+GKfYg35zyuygKMeC59rC/H1FaW0EyyLaY/S2NKN7BoihELzsx+5aRJIn/MTfo8F93pog1FM30QY+FY9Bn1YiKLTX1GMnp7NJU2c+ym7JgxB6chq9pmjiOBxe/L/zCm8J0exhxaz26LPAjwRie1himjDU7pTZY6P0VTaC/rb6Poshp+e29tlz8K50n2kkFg+ax0I84EftorTL2uWJdg4HOjfcRbKzZ7w313adoRP3t2IPzlGt2dfNKtYdZGjFAwzLXHvbXiH6mOMMoIxpRPpVETd/0Iwqy44DzUDvMPZKwJaARr8XjyAK/OlnzHZcF4/Yw2PBVVZUkiWOTh/pmOLEs8CPBGJ7WGDbViNYTca119e+9ZmAaIsOREqd16gyax8L5iBMZ1Ij+K4/0Mv0TaMTp9nDNrqbbw0bzEadwTSPOsocdNKI/a1BzU7PMpsnXiG3bygUyRCWBkh22ojoa0arA8Q8LScn0PaLqoXUw/jWa1Kqq5CNjcOToScaaFWeFgX1fMRWbIXZ8ba49OA3fyHe/M4rXz7SHKbtJTbeHEw8v+pFgDE9rDFPWKMzViIP+IesqHteIeZ5rQQ9qAtvsD2pExy09LkFWwfGQ9WaQ8WagckCN6Ne4OzTiHfbg2JiW+HR7sImxRhJ4XbO63ubaww4a0UGGzGUXWW1PpX135qVmWZYkiTSFMim4fxPv0rDKvO++77uu09mmagEys0HGsv3vOUfUz9rbQqZKjF8jA+iDy1OqqnKae2mbpIDV7HSnoqZpgm0jZwmz8VVRFEmS1HVtyy5NU/H1igFI4HR70E2/rJqP41gy2RcBfd8nSWIzebo9dF13uVxuKoNZ9jAYKG6JWRvFr0uAPbQxhucxhikx+PMRtVyc5QuSObZDkYxt29b5HnDaUukmeq8L96+U+QmDp+/Ixb7vYMn+iFN6md6Midt1WjqNzz5xMFA4oEb0cbSLs3DN5tV0e/DFkDYmju/Gv3LcHvqhz8Ul+yNOVx3+s2bZw/4aURj0w0mgFeyDl81qFkccfroDfrb2HrkTE3D3lWHYdwN9CXE+EJfbw8jFWgPn2sMsBX+0Up5OsHNWMIbjs7VGlM9+GcuTLLUiTHS/zWr/cAg5X8cWsUZosz172/vCdpODVwrOlYouZXDQnniu02jKaJWmtigK5+K6rv0k+YGyq9S1l51CmG7CplND1AacEeR+gj34BiaI3J9ypTBoDyNH16iGK4pi+gdDP8ceqqFjnCbagw6d3+2Z2vwsvqqq7Mfi1ogd7PUtfnCOcBafOIRWScYUtMUJ9sQHYvez+DCG43Ca85qdldRbIPHveHDiphyhm1iRAPKj4rzmgxQ2LORklR8WsrtGhONwGo0ok5H2TsUDc6ZuQnzVfBYuAY34RJyp8sNy0IignEYjwkLoJsCCRnwiqPxgQSOCgkYEgW4CLGjEJ4LKDxY0IihoRBDoJsDyvBpRZhyfdd7xIFT+a8hCyN7b8uDcoBEHwRj2iiEMz1m+03m2bkIXAmMPgyzViF3XLdk0cvz2sizzPJ84AVmO7Zr4XLuacruVlUcToAEq/8JNREfsQfbBKstyoj1c2xx/MGa9cvVNUBU9JfY4bK0RMYZrnNIYwmuCrutk07vpixK2Lt/BbUpm0TRNnuezdtpbl8fViLIbzqwO3W7qfEx7kLZrRy1xj0Z0tuRZeHDI4O1d12lJ53k+UeBP3PI++/pkw1mHLkynLMslG5luwUaV3+4s0HXdwoMHBu3BbjicJMnELmFiSpzLNtpc0z9Acne20IgYwxROaQzj3cR2DB7Zeo2ty7csy+U645THcQXb/25Wt/sQ9nDYE5iuasSb5zXP4trB2HdsX35fNzD9xo0Itq9SmIM4t7AHp8WcqOmnpMQ/g9U/YSkwj2UPGMOmPJAxTDmveQuma8QA5TvdYz0eyfk0YjCVM10j+ufTHNMeTqIRZdt0Gy7bpvvxDp6z7Nw+UkMGdyeXOJ1uYHCj+cEymz5a4Wz0P4K/L7yYo5MqPZ02ACE1op/5/tb5wk17qKpqpN6OxDnFHvyDv/0bR5huDzoLyqan99L/cPaAMShPbgxTNOJIAdnjcfVfzvHfg7cPasTBbiJA+Wr/4j9ITrxwAgdf6nk0ov/uWtnvtodBjTh45TX/lB84yJThzbn2MBh4Bo0oo7d5nuubpGkqp5faQyflsEs5vFVLwr/9Wg1p21bOa7YHL4rwlyNo7F0S6BzR2F9pJpzR5xHiOJ7ynSFH9zjnjkdRJE+XzOnfdviUNi7APp9hKr//mv1bccjpk9p2T7SHazVEp6vK4b8SKCU+3R4WNhMT7UEcGPYt5LRiSb8+7hHtAWOwVz6zMYx3E2IDTgHJb+km5MWdQ3v192CHIjgaUWYcSvk6/UiA8hWr1qK0B+wOHuctr59lmS3iZ9CIWvTWQaO5pNX8DntwNOJgwyIstIfL5XJzEGOWPQwG9g+kEWUaUJZl0u6rrrJnpWv+6ktav12WZXqlZq5/+7UaYgtPuxw7IUkvsH2P4yO8phFXX9Pkv4W1dVvkwUa61638RVGIGUhHroXrv6Y97NLm/0R7uFZDbL7pb5vnU+zh2mjm6r2y8xa2IXBs8rHsAWO4g1Maw81uQq+03wATAwc7FMHRiPJJIL8d9RCgfEUTyG/9CLE+CJ1N63yi2LSdSSMOtgzOkK68u80QW8pz7cHRiIMNix+zspc9DAbqKzyGRlRGPr71t3zMFUVhv5ibponjeKRdnq4R1TKsQdhWRj6+Bz/Zfe0/KBwX4r+FJu8cGlFxzHfwNcXo5UtOs3qiPQzWECcPpQTFWetHNWIPVjEMpmEtfFlgv50eVBb4kWAMUzilMYx3E9L1CqLqbPfZ39KIgx2KxuxPUUiSxB8aClC+tii1Cxh0X40U9Jk0ouJ/FIkx1HUtnXhmVu/e1Igj9uBoxMGGxY95PPBuptvDiI/zhBqxbVt1APgyX2YUaSQ3HQD92+fgLI147a0GJ6Vu0RCjEfU17X4Evhy/aQ/+FDTpYGbJgmvvMvjNgCy4OxKMYQqnNIa5SxudMbURjTjeoQzOR5SJSc5DA5QvGvFaPNcM3l6gsn5cI47bw+B8RKdhEQ71zXAqjTjiwJff4l6WEMkjKU47nntzuEHNpes6XyPqWHNsxvi1XtmPyLZtHTvwjWD6UqZ6aCr0tSvnasSt1zBuVPmd73X/NWX6lwRKyzjXHmxOVlUlRTB+pZ3vP8seZu2FNN0e7pAFD2EPGIPy5MYw3k1EUaRDfpr/4yJeS+1ah6KR2Byz5eV/hGxdvo6/XKx6cBjxScaaFWe5iX1fMRWbIXawda49OBpxsGHxn6Ih0+1hSpWcbg+nGmu2yJRSqYfy4S6lJQM6kikyZ1MCZfaoZsG12/u+T5KkKArN1t5MRi6KQgObppFeJ89zmQEj4fIse7vibJWZzdkSKYqiKXs66JoV9W9LtZe3kynqerFMt5++IfDdBNgcdfA15RtO5gllWWb1/UR7kGGpqqrslqdSuFL0Wrtk9EHtQS8esQdnB4RZex9MtAcZ1rTjHVIv5HeapjZVj2UPGIPy5MYwHkNd1/Llb0tNOnsRB6qKsixLkkT6RS21wQ6l6zoxjKIoNDPFqMS77BfH1uWrxll7y1OqqnL6/jzPdc2K9kFN02jfEWxPQUuYPbSlQZDe3K5ZEV+vGIAETrcHWel8uVysmvcbFkuSJDaTp9tD13WXy+WmTJxlD4OBfnMRmA3P4rv2SgtfdVDPzd33UnqI/utt1k/PvhvoL7eH6UU/1x7SNJWWYtYHw6Oz41l8GMPRCHPOykgBWR/P4GWzOo6RggtTvtNjPpqNhewm/HeXEGeobbk9jFxsl4vNKotZCv5opTyd5z2vWb7Lt/46PxSPe8hSAKQR2etbbRc4r/kaGEPgGKqqsoNIW/OE5TudI3QT1rMeADE87GGQ59WIT8gRKj8cBzQiKI94XjNsAd0EWNCITwSVHyxoRFDQiCDQTYAFjfhEUPnBgkYEBY0IAt0EWNCITwSVHyxoRFDQiCDQTYDleTWibIM0fTOkE0Dlv4bsjNBPO6b9NKARB8EY9orhgNBN7B7PcaBlcP815aK5yN4/TdPcvRS8LMvly8jtmqmQ66dmsXrDdMDKv9welueS7Lspv529Mw/FMe0BY9iFAxrD+Da6S3Jy/HbZQnLiDhW2fG8Spps4mgAN0E0srFkj9tC27az9RAdPfLkWc4CWoWka/wzJfblHI97dgut+lbLTwX2RRFG0UMXbDc37mVurB6Msy8EzhZawUeW/e8eK5fbQtu3lclm4Z4Gz+X7IXfGmZ91h7QFjWItHN4bxbmLhwSGDt3ddp9Itz/OJ/cLEw9bCdBNbFOVCAnQTXdctPPJu0B7s7tNJkkxsCiamJEzL4B8guTsrnNfcv+1vPv4kR7Db+jzl9hXxyyBYqey7X3eY85r7+YcU9fvZg+xib0MGT/TeiH3HLAKc19xjDJN5dGOYe17zLAZvtwex+k+cFdWUy/btvIP1HWG6iS3swRGOEzX9lJTs2zIMcgR7mKER7RmsFhsoh+YNPmnwdnu8txNuv0jattUTuq493X5PDPqWpx90U5blxCv9vs0eGqs0TSMROkfHNk3jGIHE1ratnwD917grIkzlH3zN3suQWfbQtq3ag319OfPQXnkzl5wY/BNd+znt13R70IJWqqryHzTdHiRD/JFZffebCQugETGGQU5pDFM0ol8W174BBs9Zdm4f8U0Onq0scTr5PDi3IVg3MbEor9WjLQipEf3Mb5rmPnuQQz6vJWYkzin2EKxl0CmPNj29l/6D2MNUjSgSW05dVI2ic0Tk+EW9MYoiPwv82+UUTrldDit0wm1i5PayLO3h33pOa5qm1nQGC9sZVhghjuMpXw8SoRzRqEeLyvG1dV2ruUivlmWZTKG4XC6SA3rcs0YoZ9dKtHmea30ry1IOo5QTLcddEQEq/+BryjV6Mqk9nXOKPUiccRzLwYl6ZKeE25Gaa7k0Yg/X/BMTs2KiPegBsnEca68vGWXlwnR7kIogxqxHHsuDxPDiOL7ZpW2tETGGQc5qDDc1ol8WmkJ5RwnUNq0oCs18/3bJMT8ZWr5yDLQG6inh9i4JtFcKYbqJiUV5rR5tRBiNOGixUhzSnalQm2gPcqCzn4xBKSIlPt0ewrQM0tzZt5CjqyX9+rjj2IOrEWWwX87Vlh9atH6NstnnHMSZJIm0hho4WCHtvEPrHnM0YpZl2rjog2yE/jSCwcq/7kCPNQj7mehblRS2fxaQ3wLGcaz5YKuKXn9zFu26lV86sCzLpLpmWeYnT3Cq3H32cLlcxN6cjzxnNs9gLo3Yw7Uxi3Xrnu2rbMxL7EH/tEU/+MrXWFEjYgzTOasxjHcTg2WhWWGTbY1HO3X/9msa0Waj6g87O00vsELE0dBhuol+clH2cxTJQsJ0E/5r2nEAm/8T7eGaRhyUIjbPp9hDmJah995CNLT+y9rkEexhxlizk3rHuP365kxLn+XI9TWi3+LrV6md1CzYj4nxBCxBvnjyPHf6sMFuYHAazaBG9H9rVZGPrfFUBZuPOK7L/UyYYg/XXOu+LPB/j9iDbRdGUrgQmYnsF9Aq9jAoC9I0vTmlOsx8RIzB4azGMH0+oh3wEaeydZ80TeM7Pv3bp2hEzQ1rGLbxFE/MoP8mQDfRTy7K/hiaYEk82dBYc//1a8oHhvSedjbIFHsY1IiDUkSctX5UI/YQpmXohzSi/XY6uUZ0slg8vYO3C0vQjSj2AAAJHElEQVQ0opRxWZa+0QxONd0ou8XWb/oRB79+JmpE+UoTd/rN9BxKI65lD1NkwYg9DHYGG9lDnudRFNkXX8UenHYkz3OZenEzPcfRiBjD4IMeyxjmasS2bfUT139TmV6mkdz0BvVvIzazNOK1dwnWTaAR9TXLstQ8H/QrjduDPx9Rhq1nacRr7xKsZTiJRvRbHE29jj4PfvbZXB6cI2hneyz0I8o0psHPPj/m6QuUfLE7iH3TwdZN83ChRpRpiDKn52aqNqr8/hwd5zUHhxfXsoeJrqPp9jBrk4sp9mCvudbu2xVaS2SBDOhMnKeyhUbEGKZfczJjGO8m/LKQ71ubbNGL9nN3sP+2gZpXXdf5GlHHmmOzAlqzLkkSvd1ZFdQH6Sb6uzTi1gtaw3QT/mva1Wlit3PtweZkVVVSBONX2sUfs+xh9ZZBuEMj7mgPM/bQlmnCVVVpcmUyaV3XeZ5rvkdRpJNPbf76t4vS12JWJLwoCg2XGZ392xR1yUSJX2azDk6Ed74tpm90FEXRlB0W5KHyprYIxeGnO3zKDAx/Jyedy6zh9u0kE6T+iBMxyzKZ8j+eqmB7aDuv2fe9+DPE4m1jPcUe7BRdZ5Otuq4vl4uGX8ulcXuwJtrP3Cx3ij3UdS2jGM7r9299mL77dHuozUw1uUUjFHtIkuTmh2aYPbQxBsuJjWF8D+3BspCskM5CW3IZiJdwaaiv3d73fZIkRVFIDBIi49diSBooC+elP5KJkhIuz7K3KwG6ielF2Q/Vo40I0E0MvqY4Auu61h5N9f1Ee6jrWnSeLGiTZw1KEZneoPZglzRcs4etW4b+bYjDjqpLvZDfuv5VOII9zD5nxa9Cg5XqWk2bXgNvYhtE21LYQClva0yrs/Wao/rr6Uo3dw3d/ZyVw9pDmqaquVd8rsOs178D50MzzDcDxnAf5zOG+2K41mQtbDxXyd4w3cTR2LebWG4P04t+rj2EaRmOxjnPa5amv2kafxG7Ig3o1hp8a2SGr2yydfNLZXeNuBdT7GHiNnIHRz6+m6YZnEDjcLSz+MKAMQzCec2DnKObmMXTdhNTOEfLMItzakQYhMoPlufUiDAIGhEEugmwoBGfCCo/WNCIoKARQaCbAAsa8Ymg8oMFjQgKGhEEugmwoBGfCCo/WNCIoKARQaCbAMskjfjNN9+8wOPzzTffrGI02MM5WMUeMIZzsNwYXs6oCWStz/Sd8E7AWuV4PnuQ/Xf6r7dsPD0j5Xi2AgYAgI1YURPITnhN09y9w0hZlst3J7F74M3aDy8kq+vXA2rE5fawPJdk30357eydeShC2gMaEQAAJuH0JXd350mSyC50zsnds4iiaKGzR86v0j9nnasRjLIsnbOFlrORRrQ73s9iuT20bXu5XBZuWOOfKRpsi8TpWRfYHtCIAAAwCacv8feebNv25kaDzgF0VudNuX1F/JNpgp2Qu+9+3RtpRN/xNuU1D2IPcgKKDRk80Xsj9h3aRiMCAMBSbmpEeyCvxQbKoXmD8Q/ebs+2dsKt96VtWz2u7drTrZ9p8KRse0jaOGVZTrzSFzr2BGGlaRqJ0DlHWE5PsFfqKa9+AvRf436pMBpx8DV7L0Nm2UPbtmoP9vXlzEN75c1ccmJwTi0Spn8zTLcHLWilqir/QdPtQTLEH6bXd7+ZMDQiAAAsZVwjiidGDoVSjSJnzjqHdMvR88452oO3y1m9crscdOuE28TI7WVZao8rR4HLob1pmlotMqgJnNHnEeI4nuJkkgjlSFXxFdnjyLXzFomTZZmcz3u5XCQH9LhnjVAOMpZo5URyCS/LUo48TpJE4hlJVQCNOPia/duxYSLQNXyiPUiccRzLwYl6CrOe5G6fPphLI/YwKAena8SJ9iBPl7dQCSgZZbXjdHuQiiDGrOdf928nMMmDbn75oBEBAGAp0pfI8oIsy6RzsrrKF162l7W/ZSBPukYNHNRtdt6hdY85GjHLMvWv6INshP5ss0GNuO6on9UN1v3jiw8RCvKCjr/T8cbFcaz5oPHoj0H/qMO6GlHUTJZlcRzLDz95gnM25n32cLlcxN4ct5kzS28wl0bsYVAOOulZjr6+4+BcYg/6py36wVe+BhoRAACWcnOs2emQHL3id1fOGoVZ432+Rvz/2rvbG0dhKArDWwIF0QQ1uAVaSAd04AqogDqoIwWwP450ZV074KwhX/s+v0YoyQBzJZ8xvk4+/GsaZtu2+/3upnmK33BdM6A+JcY4DMM0TS7QFDNB8bvFixkx/9kikSYU98/qZesR93N5fhNq6uFRU0ueEfOfd+ohhJB3qJy+PnUcx2EY8j/QKfVQzIjjOB523pARAQCtTsmIbsTS07fi26UlI+p55TzPeXwpdiRc1LOipHg4j1ic/6vMiJrM05P9w/P5qIx4Vj3UZMSdeij+z3BRPUzT1Pd9euGn1EP6Fs2Ia+nF4fmQEQEArdxYkg8/Nqjb0+d8qNbiQjtYXCOYLk1rnEfUmrbi7GD+yfV9rHnYLUqvtJha7B42ZkQtQ9QStMOzuigj5ks53WUWnzWfVQ+V84j19fDUXkg19ZC+xv257VenHVotGVHP/d1i0EfIiACAVofZQj0By7JY9FHTgLoEbPzr+17jtJu8yd+uJfnLsrgBWMdjjHY8hGBNIRYf9fnqWih2Rbhpzvr98Pq+Lz4KzF+m3OZmdDThN8+ztd/GGEMIbkS3HgU7nl6dboIeMWsS8Xa7qf9j/6xetoe2u8xt2zS5pTRjd7uyHtI+mHRlqvWs2PFHd2m/HtIS3Z7cU72mHtRBop4VV2y6TLv2+npIly3qLfaBqocQwuFsKBkRANCqMlvkSauYvR4FshM3Lk5HR4UD94IYo2KBWmXP+r3OuX0PObd2Lc8Wztu/Z+Vj62EcR8vc122g/dTl/wP3jL7lfwYyIgCgytd9P69ywLqu7ilnSqPpK/fuvoL2lNHmeYcTWm/PiO9SUw+Vewp+OE1MrutaXGfpkBEBAK2+LhOg6L/NiCgiIwIAWpEJfgMZESkyIgCgFZngN5ARkSIjAgBakQl+AxkRKTIiAKBV13V/8P26rqMeYHbqgYwIAAAAj4wIAAAAj4wIAAAAj4wIAAAA7y/moDNo0soBOAAAAABJRU5ErkJggg==" alt="" width="865" height="478" />

此为java与模式中提供的相关例子,主要用于解析条件判断语句,例如:A and B,A or B ,not A等条件语句,表达式分为几类

1、终结符表达式-常量表达式,主要显示true或者false

2、终结符表达式=-变量表达式,主要是需要判断的条件

3、非终结符表达式-各种运算符,包括:与或非

四、场景代码

1、环境(Context)类定义出从变量到布尔值的一个映射

package interpreter.example;

import java.util.HashMap;
import java.util.Map; public class Context { private Map<Variable,Boolean> map = new HashMap<Variable,Boolean>(); public void assign(Variable var , boolean value){
map.put(var, new Boolean(value));
} public boolean lookup(Variable var) throws IllegalArgumentException{
Boolean value = map.get(var);
if(value == null){
throw new IllegalArgumentException();
}
return value.booleanValue();
}
}

2、定义抽象表达式

package interpreter.example;
public abstract class Expression {
/**
* 以环境为准,本方法解释给定的任何一个表达式
*/
public abstract boolean interpret(Context ctx);
/**
* 检验两个表达式在结构上是否相同
*/
public abstract boolean equals(Object obj);
/**
* 返回表达式的hash code
*/
public abstract int hashCode();
/**
* 将表达式转换成字符串
*/
public abstract String toString();
}

3、定义常量表达式

package interpreter.example;
public class Constant extends Expression{ private boolean value; public Constant(boolean value){
this.value = value;
} @Override
public boolean equals(Object obj) { if(obj != null && obj instanceof Constant){
return this.value == ((Constant)obj).value;
}
return false;
} @Override
public int hashCode() {
return this.toString().hashCode();
} @Override
public boolean interpret(Context ctx) { return value;
} @Override
public String toString() {
return new Boolean(value).toString();
} }

4、定义变量表达式

package interpreter.example;
public class Variable extends Expression { private String name; public Variable(String name){
this.name = name;
}
@Override
public boolean equals(Object obj) { if(obj != null && obj instanceof Variable)
{
return this.name.equals(
((Variable)obj).name);
}
return false;
} @Override
public int hashCode() {
return this.toString().hashCode();
} @Override
public String toString() {
return name;
} @Override
public boolean interpret(Context ctx) {
return ctx.lookup(this);
} }

5、定义逻辑与

package interpreter.example;
public class And extends Expression { private Expression left,right; public And(Expression left , Expression right){
this.left = left;
this.right = right;
}
@Override
public boolean equals(Object obj) {
if(obj != null && obj instanceof And)
{
return left.equals(((And)obj).left) &&
right.equals(((And)obj).right);
}
return false;
} @Override
public int hashCode() {
return this.toString().hashCode();
} @Override
public boolean interpret(Context ctx) { return left.interpret(ctx) && right.interpret(ctx);
} @Override
public String toString() {
return "(" + left.toString() + " AND " + right.toString() + ")";
} }

6、定义逻辑或

package interpreter.example;
public class Or extends Expression {
private Expression left,right; public Or(Expression left , Expression right){
this.left = left;
this.right = right;
}
@Override
public boolean equals(Object obj) {
if(obj != null && obj instanceof Or)
{
return this.left.equals(((Or)obj).left) && this.right.equals(((Or)obj).right);
}
return false;
} @Override
public int hashCode() {
return this.toString().hashCode();
} @Override
public boolean interpret(Context ctx) {
return left.interpret(ctx) || right.interpret(ctx);
} @Override
public String toString() {
return "(" + left.toString() + " OR " + right.toString() + ")";
} }

7、定义逻辑非

package interpreter.example;
public class Not extends Expression { private Expression exp; public Not(Expression exp){
this.exp = exp;
}
@Override
public boolean equals(Object obj) {
if(obj != null && obj instanceof Not)
{
return exp.equals(
((Not)obj).exp);
}
return false;
} @Override
public int hashCode() {
return this.toString().hashCode();
} @Override
public boolean interpret(Context ctx) {
return !exp.interpret(ctx);
} @Override
public String toString() {
return "(Not " + exp.toString() + ")";
} }

8、定义客户端代码

package interpreter.example;
public class Client { public static void main(String[] args) {
Context ctx = new Context();
Variable x = new Variable("x");
Variable y = new Variable("y");
Constant c = new Constant(true);
ctx.assign(x, false);
ctx.assign(y, true); Expression exp = new Or(new And(c,x) , new And(y,new Not(x)));
System.out.println("x=" + x.interpret(ctx));
System.out.println("y=" + y.interpret(ctx));
System.out.println(exp.toString() + "=" + exp.interpret(ctx));
} }

五、总结

解释器模式可以很容易改变和扩展解释方法,但是由于每个文本都需要定义一个类,会导致后期很难管理,因此不太常用。

注:此文代码和案例都是一些经典实现,并无工作体验,以后如果有具体案例再替换

[工作中的设计模式]解释器模式模式Interpreter的更多相关文章

  1. [工作中的设计模式]享元模式模式FlyWeight

    一.模式解析 Flyweight在拳击比赛中指最轻量级,即“蝇量级”或“雨量级”,这里选择使用“享元模式”的意译,是因为这样更能反映模式的用意.享元模式是对象的结构模式.享元模式以共享的方式高效地支持 ...

  2. [工作中的设计模式]责任链模式chain

    一.模式解析 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其下家的引用而连接起来形成一条链.请求在这个链上传递,直到链上的某一个对象决定处理此请求.发出这个请求的客户端并不知 ...

  3. [工作中的设计模式]原型模式prototype

    一.模式解析 提起prototype,最近看多了js相关的内容,第一印象首先是js的原型 var Person=function(name){ this.name=name; } Person.pro ...

  4. [工作中的设计模式]中介模式模式Mediator

    一.模式解析 用一个中介者对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使耦合松散,而且可以独立地改变它们之间的交互. 中介模式又叫调停者模式,他有如下特点: 1.有多个系统或者对 ...

  5. [工作中的设计模式]策略模式stategy

    一.模式解析 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法独立于使用它的客户而独立变化. 策略模式的关键点为: 1.多种算法存在 2.算法继承同样的接口 ...

  6. 在商城系统中使用设计模式----简单工厂模式之在springboot中使用简单工厂模式

    1.前言: 不了解简单工厂模式请先移步:在商城中使用简单工厂.在这里主要是对springboot中使用简单工厂模式进行解析. 2.问题: 什么是简单工厂:它的实现方式是由一个工厂类根据传入的参数,动态 ...

  7. [工作中的设计模式]迭代子模式Iterator

    一.模式解析 迭代子模式又叫游标(Cursor)模式,是对象的行为模式.迭代子模式可以顺序地访问一个聚集中的元素而不必暴露聚集的内部表象 1.迭代子模式一般用于对集合框架的访问,常用的集合框架为lis ...

  8. [工作中的设计模式]适配器模式adapter

    一.模式解析 适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作. 也就是说,如果已经写好了一个接口,但是又来了一种截然不同的接口,如 ...

  9. [工作中的设计模式]备忘录模式memento

    一.模式解析 备忘录对象是一个用来存储另外一个对象内部状态的快照的对象.备忘录模式的用意是在不破坏封装的条件下,将一个对象的状态捕捉(Capture)住,并外部化,存储起来,从而可以在将来合适的时候把 ...

随机推荐

  1. Codeforces Round #377 (Div. 2) B. Cormen — The Best Friend Of a Man(贪心)

     传送门 Description Recently a dog was bought for Polycarp. The dog's name is Cormen. Now Polycarp has ...

  2. MySQL主从同步延迟

    早上接到open-falcon报警,一台mysql从库同步延迟2w多秒,mysql版本比较老,用的5.1.37. 连接从库查找原因: show processlist一下,查看哪些线程在跑. 看到Ti ...

  3. Twemproxy 缓存代理服务器

    Twemproxy 缓存代理服务器 Twemproxy 概述 Twemproxy(又称为nutcracker)是一个轻量级的Redis和Memcached代理,主要用来减少对后端缓存服务器的连接数.T ...

  4. asp.net core 使用EF7 Code First 创建数据库,同时使用命令创建数据库

    1.首先下载vs2015的Asp.Net Core(RC2)的插件工具(https://www.microsoft.com/net/core#windows)2.创建一个asp.net Core的项目 ...

  5. php函数fgets读取文件

    如果一个文件比较大,可以考虑用fgets函数 下面是个例子: #文件作用:fgets读取文件 $start_time = microtime(true); $file_name = "a.t ...

  6. java中volatile关键字的含义

    在java线程并发处理中,有一个关键字volatile的使用目前存在很大的混淆,以为使用这个关键字,在进行多线程并发处理的时候就可以万事大吉. Java语言是支持多线程的,为了解决线程并发的问题,在语 ...

  7. javascript设置和获取cookie的通用方法

    //获取cookie  function getCookieValue(cookieName)  {     var cookieValue = document.cookie;     var co ...

  8. 浅谈 jQuery 事件源码定位问题

    该方法已过期,chrome 48还是49开始,自带各种流行框架的事件绑定解析. 勾上这个选项即可. 昨天群里有人问了个事件源码定位的问题,简单描述下是这样的. 在一个不是自己写的页面上,如何快速定位到 ...

  9. ASP.NET 实现登陆验证

    public class ValidModule : IHttpModule { /// <summary> /// 您将需要在网站的 Web.config 文件中配置此模块 /// 并向 ...

  10. 微信网页版APP - 网页微信客户端电脑版体验

    微信网页版很早就出来了,解决了很多人上班不能玩手机的问题.微信电脑版-网页微信客户端,直接安装在桌面的微信网页版,免去了开浏览器的麻烦.双击就启动了,和其他的应用程序一样:运行过程中可以隐藏在桌面右下 ...