Reference:

http://ufldl.stanford.edu/wiki/index.php/Softmax_regression

http://deeplearning.net/tutorial/logreg.html

起源:Logistic的二类分类

Softmax回归是Logistic回归的泛化版本,用于解决线性多类(K类)的分类问题。

Logistic回归可以看作是Softmax回归在K=2时的特例。Softmax函数即是K分类版的Logistc函数。

裸Softmax回归的效果很差,因为没有隐层结构,归根还是是线性回归。所以在深度学习里,Softmax则通常作为MLP的输出层。

即,将BP网络和Softmax结合起来,取BP网络的隐层映射机制、Softmax的多分类机制,加以组合形成新的MLP架构。

这么做的原因就是,传统BP网络的输出层是个多神经元的自行设计接口层,比如常见的log2(K)方法,转多分类需要麻烦的编码。

但实际上,隐层(可看作是input)到输出层的映射原理等效于Softmax,既然Softmax拥有概率取分类的方法,何必再用低效的编码方法?

Part I  如何从2类转化为K类?

解决方案是引入K组(W、b)参数,即有K个分隔超平面,选择$max P(Y=j|x^{i},\theta,b)$作为最终分类即可。

由于存在K组参数,原来的$h(\theta)=sigmoid(Inner)$将从单个值,变成一个大小为K的向量。

Part II  变化的目标函数

Logistic的目标函数: $J(\theta)=\sum_{i=1}^{m}(1-y^{(i)})log(1-h_{\theta}(x^{i})+y^{i}log(h_{\theta}(x^{(i)}))$

在Softmax里,由于$h_{\theta}(x^{(i)}$已经变成了向量,所以不能再使用。

实际上,在Logistic的推导里,$h_{\theta}(x^{(i)})$只是偶然而已,$P(y=0|x;\theta)=h(\theta)$。

即$P(y|x;\theta))$才是真正的概率分布函数,上述情况只是二项分布的特例。由于y的取值变成的K类,所以新的K项分布概率密度分布表示如下:

$P(y^{(i)}=j|x;\theta)=\frac{e^{W_{j}X^{i}}}{\sum_{l=1}^{k}e^{W_{l}X^{i}}}$

且定义$1\{y_{i}=j\}=(y_{i}==j)?1:0$

则  $J(\theta)=\sum_{i=1}^{m}\sum_{j=0}^{l}1\{y_{i}=j\}log\frac{e^{W_{j}X^{i}}}{\sum_{l=1}^{k}e^{W_{l}X^{i}}}$

仔细观察,其实就是$h_{\theta}(x^{(i)})$这个向量根据$y^{(i)}$情况抽取的单个值而已,这就是Logistic函数的修改版本——Softmax函数

梯度变成:$\frac{\partial J(\theta_{j})}{\partial \theta_{j}}=\sum_{i=1}^{m}x^{(i)}(1\{y_{i}=j\}-P(y^{(i)}=j|x;\theta_{j})),j=1,2....k$

可以使用梯度上升算法了(下降算法也可,即取均值加上负号,变成负对数似然函数):

$\theta_{j}^{new}=\theta_{j}^{new}+\alpha\frac{\partial J(\theta_{j})}{\partial \theta_{j}},j=1,2....k$

Part III  C++代码与实现

#include "cstdio"
#include "iostream"
#include "fstream"
#include "vector"
#include "sstream"
#include "string"
#include "math.h"
using namespace std;
#define N 500
#define delta 0.0001
#define alpha 0.1
#define cin fin
#define K 2
#define Dim dataSet[0].feature.size()
struct Data
{
vector<double> feature;
int y;
Data(vector<double> feature,int y):feature(feature),y(y) {}
};
struct Parament
{
vector<double> w;
double b;
Parament() {}
Parament(vector<double> w,double b):w(w),b(b) {}
};
vector<Data> dataSet;
vector<Parament> parament;
void read()
{
ifstream fin("fullTrain.txt");
double fea;int cls;
string line;
while(getline(cin,line))
{
stringstream sin(line);
vector<double> feature;
while(sin>>fea) feature.push_back(fea);
cls=feature.back();feature.pop_back();
dataSet.push_back(Data(feature,cls));
}
for(int i=;i<K;i++) parament.push_back(Parament(vector<double>(Dim,0.0),0.0));
}
double calcInner(Parament param,Data data)
{
double ret=0.0;
for(int i=;i<data.feature.size();i++) ret+=(param.w[i]*data.feature[i]);
return ret+param.b;
}
double calcProb(int j,Data data)
{
double ret=0.0,spec=0.0;
for(int l=;l<=K;l++)
{
double tmp=exp(calcInner(parament[l-],data));
if(l==j) spec=tmp;
ret+=tmp;
}
return spec/ret;
}
double calcLW()
{
double ret=0.0;
for(int i=;i<dataSet.size();i++)
{
double prob=calcProb(dataSet[i].y,dataSet[i]);
ret+=log(prob);
}
return ret;
}
void gradient(int iter)
{
/*batch (logistic)
for(int i=0;i<param.w.size();i++)
{
double ret=0.0;
for(int j=0;j<dataSet.size();j++)
{
double ALPHA=(double)0.1/(iter+j+1)+0.1;
ret+=ALPHA*(dataSet[j].y-sigmoid(param,dataSet[j]))*dataSet[j].feature[i];
}
param.w[i]+=ret;
}
for(int i=0;i<dataSet.size();i++) ret+=alpha*(dataSet[i].y-sigmoid(param,dataSet[i]));
*/
//random
for(int j=;j<dataSet.size();j++)
{
double ret=0.0,prob=0.0;
double ALPHA=(double)0.1/(iter+j+)+0.1;
for(int k=;k<=K;k++)
{
prob=((dataSet[j].y==k?:)-calcProb(k,dataSet[j]));
for(int i=;i<Dim;i++) parament[k-].w[i]+=ALPHA*prob*dataSet[j].feature[i];
parament[k-].b+=ALPHA*prob;
}
}
}
void classify()
{
ifstream fin("fullTest.txt");
double fea;int cls,no=;
string line;
while(getline(cin,line))
{
stringstream sin(line);
vector<double> feature;
while(sin>>fea) feature.push_back(fea);
cls=feature.back();feature.pop_back();
int bestClass=-;double bestP=-;
for(int i=;i<=K;i++)
{
double p=calcProb(i,Data(feature,cls));
if(p>bestP) {bestP=p;bestClass=i;}
}
cout<<"Test:"<<++no<<" origin:"<<cls<<" classify:"<<bestClass<<endl;
}
}
void mainProcess()
{
double objLW=calcLW(),newLW;
int iter=;
gradient(iter);
newLW=calcLW();
while(fabs(newLW-objLW)>delta)
{
objLW=newLW;
gradient(iter);
newLW=calcLW();
iter++;
//if(iter%5==0) cout<<"iter: "<<iter<<" target value: "<<newLW<<endl;
}
cout<<endl<<endl;
}
int main()
{
read();
mainProcess();
classify();
}

Softmax

Part IV  测试

使用Iris鸢尾花数据集:http://archive.ics.uci.edu/ml/datasets/Iris,是三类分类问题

该数据集的第三组数据是非线性的,若K=3训练,则因为非线性数据扰乱,错误率很大。

若K=2,则代码等效于Logistic回归,错误率相近。

Softmax回归的更多相关文章

  1. Softmax回归(Softmax Regression)

    转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...

  2. DeepLearning之路(二)SoftMax回归

    Softmax回归   1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试 ...

  3. Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...

  4. Softmax 回归原理介绍

    考虑一个多分类问题,即预测变量y可以取k个离散值中的任何一个.比如一个邮件分类系统将邮件分为私人邮件,工作邮件和垃圾邮件.由于y仍然是一个离散值,只是相对于二分类的逻辑回归多了一些类别.下面将根据多项 ...

  5. UFLDL教程(四)之Softmax回归

    关于Andrew Ng的machine learning课程中,有一章专门讲解逻辑回归(Logistic回归),具体课程笔记见另一篇文章. 下面,对Logistic回归做一个简单的小结: 给定一个待分 ...

  6. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  7. LR多分类推广 - Softmax回归*

    LR是一个传统的二分类模型,它也可以用于多分类任务,其基本思想是:将多分类任务拆分成若干个二分类任务,然后对每个二分类任务训练一个模型,最后将多个模型的结果进行集成以获得最终的分类结果.一般来说,可以 ...

  8. Logistic回归(逻辑回归)和softmax回归

    一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...

  9. 手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tut ...

随机推荐

  1. entity

  2. 网络中两台主机的通信过程(TCP)

    两台主机通信有两种情况:1.在同一网段中 2.不在同一网段中 (1.)在同一网段的通信过程 主机在应用层上的操作: TCP/IP协议上tcp的端口对应的各种应用程序,客户机要访问某个应用程序就会要求打 ...

  3. webpackJsonp is not defined?

    用了CommonsChunkPlugin生成了公共文件,但是页面还没有引用这个公共文件 比如下面这个配置 var webpack = require('webpack'); var path = re ...

  4. Ubuntu下su被拒绝

    ubuntu@ubuntu:~$ sudo passwd root输入新的 UNIX 密码: 重新输入新的 UNIX 密码: passwd:已成功更新密码前提是你肯定得知道当前用户的密码. 然后登录: ...

  5. JAVA对MySQL数据库的操作

    一.导包: 使用JDBC连接MySQL数据库时,首先需要导入一个第三方的JAR包(点击下载),下载解压得到一个JAR包,并导入到JAVA项目中,如下图: 二.DBHelper类: 代码如下: impo ...

  6. Windows操作技巧 之二(持续更新)

     定时自动关机 shutdown -s -t 3600 shutdown [/i | /l | /s | /r | /g | /a | /p | /h | /e] [/f /m \\computer] ...

  7. 【Alpha】Daily Scrum Meeting第一次

    一.本次Daily Scrum Meeting主要内容 代码任务细分 服务器搭建 每个人时间分配及安排 二.项目进展 学号尾数 今天做的任务 任务完成度 明天要做的任务 612 写代码框架 30% 主 ...

  8. 为 MySQL 设置默认字符集(UTF-8)避免产生乱码

    环境:Windows 7+Wamp Server+MySQL 5.7.9 查看MySQL默认编码: SHOW VARIABLES LIKE 'character%' character_set_cli ...

  9. soundtouch变速wsola算法之改进

    soundtouch变速算法很类似sola算法,细看才知道是wsola算法. 上个星期有个需求,将该变速应用到直播的包处理,有点类似于webrtc的netEQ处理机制. 直接使用soundtouch, ...

  10. WPF CollectionViewSource CollectionView

    CollectionView 通俗讲就是可以对你绑定的集合可以进行 分组,排序 等功能 CollectionViewSource  根据字面意思是xxx的数据源 详细的介绍还是看 http://www ...