mm/swap
/*
* linux/mm/swap.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* This file should contain most things doing the swapping from/to disk.
* Started 18.12.91
*/
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <asm/system.h> /* for cli()/sti() */
#include <asm/bitops.h>
#define MAX_SWAPFILES 8
#define SWP_USED 1
#define SWP_WRITEOK 3
#define SWP_TYPE(entry) (((entry) & 0xfe) >> 1)
#define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << PAGE_SHIFT))
static int nr_swapfiles = 0;
static struct wait_queue * lock_queue = NULL;
//交换信息结构
static struct swap_info_struct {
unsigned long flags;
struct inode * swap_file;
unsigned int swap_device;
unsigned char * swap_map;
unsigned char * swap_lockmap;
int pages;
int lowest_bit;
int highest_bit;
unsigned long max;
} swap_info[MAX_SWAPFILES];
extern unsigned long free_page_list;
extern int shm_swap (int);
/*
* The following are used to make sure we don't thrash too much...
* NOTE!! NR_LAST_FREE_PAGES must be a power of 2...
*/
#define NR_LAST_FREE_PAGES 32
static unsigned long last_free_pages[NR_LAST_FREE_PAGES] = {0,};
//读写交换页
void rw_swap_page(int rw, unsigned long entry, char * buf)
{
unsigned long type, offset;
struct swap_info_struct * p;
type = SWP_TYPE(entry);
if (type >= nr_swapfiles) {
printk("Internal error: bad swap-device\n");
return;
}
p = &swap_info[type];
offset = SWP_OFFSET(entry);
if (offset >= p->max) {
printk("rw_swap_page: weirdness\n");
return;
}
if (!(p->flags & SWP_USED)) {
printk("Trying to swap to unused swap-device\n");
return;
}
while (set_bit(offset,p->swap_lockmap))
sleep_on(&lock_queue);
if (rw == READ)
kstat.pswpin++;
else
kstat.pswpout++;
if (p->swap_device) {
ll_rw_page(rw,p->swap_device,offset,buf);
} else if (p->swap_file) {
unsigned int zones[8];
unsigned int block;
int i, j;
block = offset << (12 - p->swap_file->i_sb->s_blocksize_bits);
for (i=0, j=0; j< PAGE_SIZE ; i++, j +=p->swap_file->i_sb->s_blocksize)
if (!(zones[i] = bmap(p->swap_file,block++))) {
printk("rw_swap_page: bad swap file\n");
return;
}
ll_rw_swap_file(rw,p->swap_file->i_dev, zones, i,buf);
} else
printk("re_swap_page: no swap file or device\n");
if (offset && !clear_bit(offset,p->swap_lockmap))
printk("rw_swap_page: lock already cleared\n");
wake_up(&lock_queue);
}
//获取交换页
unsigned int get_swap_page(void)
{
struct swap_info_struct * p;
unsigned int offset, type;
p = swap_info;
for (type = 0 ; type < nr_swapfiles ; type++,p++) {
if ((p->flags & SWP_WRITEOK) != SWP_WRITEOK)
continue;
for (offset = p->lowest_bit; offset <= p->highest_bit ; offset++) {
if (p->swap_map[offset])
continue;
p->swap_map[offset] = 1;
nr_swap_pages--;
if (offset == p->highest_bit)
p->highest_bit--;
p->lowest_bit = offset;
return SWP_ENTRY(type,offset);
}
}
return 0;
}
//复制交换页
unsigned long swap_duplicate(unsigned long entry)
{
struct swap_info_struct * p;
unsigned long offset, type;
if (!entry)
return 0;
offset = SWP_OFFSET(entry);
type = SWP_TYPE(entry);
if (type == SHM_SWP_TYPE)
return entry;
if (type >= nr_swapfiles) {
printk("Trying to duplicate nonexistent swap-page\n");
return 0;
}
p = type + swap_info;
if (offset >= p->max) {
printk("swap_free: weirdness\n");
return 0;
}
if (!p->swap_map[offset]) {
printk("swap_duplicate: trying to duplicate unused page\n");
return 0;
}
p->swap_map[offset]++;
return entry;
}
//释放
void swap_free(unsigned long entry)
{
struct swap_info_struct * p;
unsigned long offset, type;
if (!entry)
return;
type = SWP_TYPE(entry);
if (type == SHM_SWP_TYPE)
return;
if (type >= nr_swapfiles) {
printk("Trying to free nonexistent swap-page\n");
return;
}
p = & swap_info[type];
offset = SWP_OFFSET(entry);
if (offset >= p->max) {
printk("swap_free: weirdness\n");
return;
}
if (!(p->flags & SWP_USED)) {
printk("Trying to free swap from unused swap-device\n");
return;
}
while (set_bit(offset,p->swap_lockmap))
sleep_on(&lock_queue);
if (offset < p->lowest_bit)
p->lowest_bit = offset;
if (offset > p->highest_bit)
p->highest_bit = offset;
if (!p->swap_map[offset])
printk("swap_free: swap-space map bad (entry %08lx)\n",entry);
else
if (!--p->swap_map[offset])
nr_swap_pages++;
if (!clear_bit(offset,p->swap_lockmap))
printk("swap_free: lock already cleared\n");
wake_up(&lock_queue);
}
//交换入
void swap_in(unsigned long *table_ptr)
{
unsigned long entry;
unsigned long page;
entry = *table_ptr;
if (PAGE_PRESENT & entry) {
printk("trying to swap in present page\n");
return;
}
if (!entry) {
printk("No swap page in swap_in\n");
return;
}
if (SWP_TYPE(entry) == SHM_SWP_TYPE) {
shm_no_page ((unsigned long *) table_ptr);
return;
}
if (!(page = get_free_page(GFP_KERNEL))) {
oom(current);
page = BAD_PAGE;
} else
read_swap_page(entry, (char *) page);
if (*table_ptr != entry) {
free_page(page);
return;
}
*table_ptr = page | (PAGE_DIRTY | PAGE_PRIVATE);
swap_free(entry);
}
//试图交换出
static inline int try_to_swap_out(unsigned long * table_ptr)
{
int i;
unsigned long page;
unsigned long entry;
page = *table_ptr;
if (!(PAGE_PRESENT & page))
return 0;
if (page >= high_memory)
return 0;
if (mem_map[MAP_NR(page)] & MAP_PAGE_RESERVED)
return 0;
if (PAGE_ACCESSED & page) {
*table_ptr &= ~PAGE_ACCESSED;
return 0;
}
for (i = 0; i < NR_LAST_FREE_PAGES; i++)
if (last_free_pages[i] == (page & PAGE_MASK))
return 0;
if (PAGE_DIRTY & page) {
page &= PAGE_MASK;
if (mem_map[MAP_NR(page)] != 1)
return 0;
if (!(entry = get_swap_page()))
return 0;
*table_ptr = entry;
invalidate();
write_swap_page(entry, (char *) page);
free_page(page);
return 1;
}
page &= PAGE_MASK;
*table_ptr = 0;
invalidate();
free_page(page);
return 1 + mem_map[MAP_NR(page)];
}
/*
* sys_idle() does nothing much: it just searches for likely candidates for
* swapping out or forgetting about. This speeds up the search when we
* actually have to swap.
*/
//空闲
asmlinkage int sys_idle(void)
{
need_resched = 1;
return 0;
}
/*
* A new implementation of swap_out(). We do not swap complete processes,
* but only a small number of blocks, before we continue with the next
* process. The number of blocks actually swapped is determined on the
* number of page faults, that this process actually had in the last time,
* so we won't swap heavily used processes all the time ...
*
* Note: the priority argument is a hint on much CPU to waste with the
* swap block search, not a hint, of how much blocks to swap with
* each process.
*
* (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
*/
#ifdef NEW_SWAP
/*
* These are the miminum and maximum number of pages to swap from one process,
* before proceeding to the next:
*/
#define SWAP_MIN 4
#define SWAP_MAX 32
/*
* The actual number of pages to swap is determined as:
* SWAP_RATIO / (number of recent major page faults)
*/
#define SWAP_RATIO 128
//交换出
static int swap_out(unsigned int priority)
{
static int swap_task;
int table;
int page;
long pg_table;
int loop;
int counter = NR_TASKS * 2 >> priority;
struct task_struct *p;
counter = NR_TASKS * 2 >> priority;
for(; counter >= 0; counter--, swap_task++) {
/*
* Check that swap_task is suitable for swapping. If not, look for
* the next suitable process.
*/
loop = 0;
while(1) {
if(swap_task >= NR_TASKS) {
swap_task = 1;
if(loop)
/* all processes are unswappable or already swapped out */
return 0;
loop = 1;
}
p = task[swap_task];
if(p && p->swappable && p->rss)
break;
swap_task++;
}
/*
* Determine the number of pages to swap from this process.
*/
if(! p -> swap_cnt) {
p->dec_flt = (p->dec_flt * 3) / 4 + p->maj_flt - p->old_maj_flt;
p->old_maj_flt = p->maj_flt;
if(p->dec_flt >= SWAP_RATIO / SWAP_MIN) {
p->dec_flt = SWAP_RATIO / SWAP_MIN;
p->swap_cnt = SWAP_MIN;
} else if(p->dec_flt <= SWAP_RATIO / SWAP_MAX)
p->swap_cnt = SWAP_MAX;
else
p->swap_cnt = SWAP_RATIO / p->dec_flt;
}
/*
* Go through process' page directory.
*/
for(table = p->swap_table; table < 1024; table++) {
pg_table = ((unsigned long *) p->tss.cr3)[table];
if(pg_table >= high_memory)
continue;
if(mem_map[MAP_NR(pg_table)] & MAP_PAGE_RESERVED)
continue;
if(!(PAGE_PRESENT & pg_table)) {
printk("swap_out: bad page-table at pg_dir[%d]: %08lx\n",
table, pg_table);
((unsigned long *) p->tss.cr3)[table] = 0;
continue;
}
pg_table &= 0xfffff000;
/*
* Go through this page table.
*/
for(page = p->swap_page; page < 1024; page++) {
switch(try_to_swap_out(page + (unsigned long *) pg_table)) {
case 0:
break;
case 1:
p->rss--;
/* continue with the following page the next time */
p->swap_table = table;
p->swap_page = page + 1;
if((--p->swap_cnt) == 0)
swap_task++;
return 1;
default:
p->rss--;
break;
}
}
p->swap_page = 0;
}
/*
* Finish work with this process, if we reached the end of the page
* directory. Mark restart from the beginning the next time.
*/
p->swap_table = 0;
}
return 0;
}
#else /* old swapping procedure */
/*
* Go through the page tables, searching for a user page that
* we can swap out.
*
* We now check that the process is swappable (normally only 'init'
* is un-swappable), allowing high-priority processes which cannot be
* swapped out (things like user-level device drivers (Not implemented)).
*/
static int swap_out(unsigned int priority)
{
static int swap_task = 1;
static int swap_table = 0;
static int swap_page = 0;
int counter = NR_TASKS*8;
int pg_table;
struct task_struct * p;
counter >>= priority;
check_task:
if (counter-- < 0)
return 0;
if (swap_task >= NR_TASKS) {
swap_task = 1;
goto check_task;
}
p = task[swap_task];
if (!p || !p->swappable) {
swap_task++;
goto check_task;
}
check_dir:
if (swap_table >= PTRS_PER_PAGE) {
swap_table = 0;
swap_task++;
goto check_task;
}
pg_table = ((unsigned long *) p->tss.cr3)[swap_table];
if (pg_table >= high_memory || (mem_map[MAP_NR(pg_table)] & MAP_PAGE_RESERVED)) {
swap_table++;
goto check_dir;
}
if (!(PAGE_PRESENT & pg_table)) {
printk("bad page-table at pg_dir[%d]: %08x\n",
swap_table,pg_table);
((unsigned long *) p->tss.cr3)[swap_table] = 0;
swap_table++;
goto check_dir;
}
pg_table &= PAGE_MASK;
check_table:
if (swap_page >= PTRS_PER_PAGE) {
swap_page = 0;
swap_table++;
goto check_dir;
}
switch (try_to_swap_out(swap_page + (unsigned long *) pg_table)) {
case 0: break;
case 1: p->rss--; return 1;
default: p->rss--;
}
swap_page++;
goto check_table;
}
#endif
//尝试释放页面
static int try_to_free_page(void)
{
int i=6;
while (i--) {
if (shrink_buffers(i))
return 1;
if (shm_swap(i))
return 1;
if (swap_out(i))
return 1;
}
return 0;
}
/*
* Note that this must be atomic, or bad things will happen when
* pages are requested in interrupts (as malloc can do). Thus the
* cli/sti's.
*/
//添加内存队列
static inline void add_mem_queue(unsigned long addr, unsigned long * queue)
{
addr &= PAGE_MASK;
*(unsigned long *) addr = *queue;
*queue = addr;
}
/*
* Free_page() adds the page to the free lists. This is optimized for
* fast normal cases (no error jumps taken normally).
*
* The way to optimize jumps for gcc-2.2.2 is to:
* - select the "normal" case and put it inside the if () { XXX }
* - no else-statements if you can avoid them
*
* With the above two rules, you get a straight-line execution path
* for the normal case, giving better asm-code.
*/
//释放页面
void free_page(unsigned long addr)
{
if (addr < high_memory) {
unsigned short * map = mem_map + MAP_NR(addr);
if (*map) {
if (!(*map & MAP_PAGE_RESERVED)) {
unsigned long flag;
save_flags(flag);
cli();
if (!--*map) {
if (nr_secondary_pages < MAX_SECONDARY_PAGES) {
add_mem_queue(addr,&secondary_page_list);
nr_secondary_pages++;
restore_flags(flag);
return;
}
add_mem_queue(addr,&free_page_list);
nr_free_pages++;
}
restore_flags(flag);
}
return;
}
printk("Trying to free free memory (%08lx): memory probabably corrupted\n",addr);
printk("PC = %08lx\n",*(((unsigned long *)&addr)-1));
return;
}
}
/*
* This is one ugly macro, but it simplifies checking, and makes
* this speed-critical place reasonably fast, especially as we have
* to do things with the interrupt flag etc.
*
* Note that this #define is heavily optimized to give fast code
* for the normal case - the if-statements are ordered so that gcc-2.2.2
* will make *no* jumps for the normal code. Don't touch unless you
* know what you are doing.
*/
//从内存队列中移除
#define REMOVE_FROM_MEM_QUEUE(queue,nr) \
cli(); \
if ((result = queue) != 0) { \
if (!(result & ~PAGE_MASK) && result < high_memory) { \
queue = *(unsigned long *) result; \
if (!mem_map[MAP_NR(result)]) { \
mem_map[MAP_NR(result)] = 1; \
nr--; \
last_free_pages[index = (index + 1) & (NR_LAST_FREE_PAGES - 1)] = result; \
restore_flags(flag); \
return result; \
} \
printk("Free page %08lx has mem_map = %d\n", \
result,mem_map[MAP_NR(result)]); \
} else \
printk("Result = 0x%08lx - memory map destroyed\n", result); \
queue = 0; \
nr = 0; \
} else if (nr) { \
printk(#nr " is %d, but " #queue " is empty\n",nr); \
nr = 0; \
} \
restore_flags(flag)
/*
* Get physical address of first (actually last :-) free page, and mark it
* used. If no free pages left, return 0.
*
* Note that this is one of the most heavily called functions in the kernel,
* so it's a bit timing-critical (especially as we have to disable interrupts
* in it). See the above macro which does most of the work, and which is
* optimized for a fast normal path of execution.
*/
//获取空闲页
unsigned long __get_free_page(int priority)
{
extern unsigned long intr_count;
unsigned long result, flag;
static unsigned long index = 0;
/* this routine can be called at interrupt time via
malloc. We want to make sure that the critical
sections of code have interrupts disabled. -RAB
Is this code reentrant? */
if (intr_count && priority != GFP_ATOMIC) {
printk("gfp called nonatomically from interrupt %08lx\n",
((unsigned long *)&priority)[-1]);
priority = GFP_ATOMIC;
}
save_flags(flag);
repeat:
REMOVE_FROM_MEM_QUEUE(free_page_list,nr_free_pages);
if (priority == GFP_BUFFER)
return 0;
if (priority != GFP_ATOMIC)
if (try_to_free_page())
goto repeat;
REMOVE_FROM_MEM_QUEUE(secondary_page_list,nr_secondary_pages);
return 0;
}
/*
* Trying to stop swapping from a file is fraught with races, so
* we repeat quite a bit here when we have to pause. swapoff()
* isn't exactly timing-critical, so who cares?
*/
//尝试取消使用
static int try_to_unuse(unsigned int type)
{
int nr, pgt, pg;
unsigned long page, *ppage;
unsigned long tmp = 0;
struct task_struct *p;
nr = 0;
/*
* When we have to sleep, we restart the whole algorithm from the same
* task we stopped in. That at least rids us of all races.
*/
repeat:
for (; nr < NR_TASKS ; nr++) {
p = task[nr];
if (!p)
continue;
for (pgt = 0 ; pgt < PTRS_PER_PAGE ; pgt++) {
ppage = pgt + ((unsigned long *) p->tss.cr3);
page = *ppage;
if (!page)
continue;
if (!(page & PAGE_PRESENT) || (page >= high_memory))
continue;
if (mem_map[MAP_NR(page)] & MAP_PAGE_RESERVED)
continue;
ppage = (unsigned long *) (page & PAGE_MASK);
for (pg = 0 ; pg < PTRS_PER_PAGE ; pg++,ppage++) {
page = *ppage;
if (!page)
continue;
if (page & PAGE_PRESENT)
continue;
if (SWP_TYPE(page) != type)
continue;
if (!tmp) {
if (!(tmp = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
goto repeat;
}
read_swap_page(page, (char *) tmp);
if (*ppage == page) {
*ppage = tmp | (PAGE_DIRTY | PAGE_PRIVATE);
++p->rss;
swap_free(page);
tmp = 0;
}
goto repeat;
}
}
}
free_page(tmp);
return 0;
}
//关闭交换
asmlinkage int sys_swapoff(const char * specialfile)
{
struct swap_info_struct * p;
struct inode * inode;
unsigned int type;
int i;
if (!suser())
return -EPERM;
i = namei(specialfile,&inode);
if (i)
return i;
p = swap_info;
for (type = 0 ; type < nr_swapfiles ; type++,p++) {
if ((p->flags & SWP_WRITEOK) != SWP_WRITEOK)
continue;
if (p->swap_file) {
if (p->swap_file == inode)
break;
} else {
if (!S_ISBLK(inode->i_mode))
continue;
if (p->swap_device == inode->i_rdev)
break;
}
}
iput(inode);
if (type >= nr_swapfiles)
return -EINVAL;
p->flags = SWP_USED;
i = try_to_unuse(type);
if (i) {
p->flags = SWP_WRITEOK;
return i;
}
nr_swap_pages -= p->pages;
iput(p->swap_file);
p->swap_file = NULL;
p->swap_device = 0;
vfree(p->swap_map);
p->swap_map = NULL;
free_page((long) p->swap_lockmap);
p->swap_lockmap = NULL;
p->flags = 0;
return 0;
}
/*
* Written 01/25/92 by Simmule Turner, heavily changed by Linus.
*
* The swapon system call
*/
//打开交换
asmlinkage int sys_swapon(const char * specialfile)
{
struct swap_info_struct * p;
struct inode * swap_inode;
unsigned int type;
int i,j;
int error;
if (!suser())
return -EPERM;
p = swap_info;
for (type = 0 ; type < nr_swapfiles ; type++,p++)
if (!(p->flags & SWP_USED))
break;
if (type >= MAX_SWAPFILES)
return -EPERM;
if (type >= nr_swapfiles)
nr_swapfiles = type+1;
p->flags = SWP_USED;
p->swap_file = NULL;
p->swap_device = 0;
p->swap_map = NULL;
p->swap_lockmap = NULL;
p->lowest_bit = 0;
p->highest_bit = 0;
p->max = 1;
error = namei(specialfile,&swap_inode);
if (error)
goto bad_swap;
error = -EBUSY;
if (swap_inode->i_count != 1)
goto bad_swap;
error = -EINVAL;
if (S_ISBLK(swap_inode->i_mode)) {
p->swap_device = swap_inode->i_rdev;
iput(swap_inode);
error = -ENODEV;
if (!p->swap_device)
goto bad_swap;
error = -EBUSY;
for (i = 0 ; i < nr_swapfiles ; i++) {
if (i == type)
continue;
if (p->swap_device == swap_info[i].swap_device)
goto bad_swap;
}
} else if (S_ISREG(swap_inode->i_mode))
p->swap_file = swap_inode;
else
goto bad_swap;
p->swap_lockmap = (unsigned char *) get_free_page(GFP_USER);
if (!p->swap_lockmap) {
printk("Unable to start swapping: out of memory :-)\n");
error = -ENOMEM;
goto bad_swap;
}
read_swap_page(SWP_ENTRY(type,0), (char *) p->swap_lockmap);
if (memcmp("SWAP-SPACE",p->swap_lockmap+4086,10)) {
printk("Unable to find swap-space signature\n");
error = -EINVAL;
goto bad_swap;
}
memset(p->swap_lockmap+PAGE_SIZE-10,0,10);
j = 0;
p->lowest_bit = 0;
p->highest_bit = 0;
for (i = 1 ; i < 8*PAGE_SIZE ; i++) {
if (test_bit(i,p->swap_lockmap)) {
if (!p->lowest_bit)
p->lowest_bit = i;
p->highest_bit = i;
p->max = i+1;
j++;
}
}
if (!j) {
printk("Empty swap-file\n");
error = -EINVAL;
goto bad_swap;
}
p->swap_map = (unsigned char *) vmalloc(p->max);
if (!p->swap_map) {
error = -ENOMEM;
goto bad_swap;
}
for (i = 1 ; i < p->max ; i++) {
if (test_bit(i,p->swap_lockmap))
p->swap_map[i] = 0;
else
p->swap_map[i] = 0x80;
}
p->swap_map[0] = 0x80;
memset(p->swap_lockmap,0,PAGE_SIZE);
p->flags = SWP_WRITEOK;
p->pages = j;
nr_swap_pages += j;
printk("Adding Swap: %dk swap-space\n",j<<2);
return 0;
bad_swap:
free_page((long) p->swap_lockmap);
vfree(p->swap_map);
iput(p->swap_file);
p->swap_device = 0;
p->swap_file = NULL;
p->swap_map = NULL;
p->swap_lockmap = NULL;
p->flags = 0;
return error;
}
//交换信息
void si_swapinfo(struct sysinfo *val)
{
unsigned int i, j;
val->freeswap = val->totalswap = 0;
for (i = 0; i < nr_swapfiles; i++) {
if (!(swap_info[i].flags & SWP_USED))
continue;
for (j = 0; j < swap_info[i].max; ++j)
switch (swap_info[i].swap_map[j]) {
case 128:
continue;
case 0:
++val->freeswap;
default:
++val->totalswap;
}
}
val->freeswap <<= PAGE_SHIFT;
val->totalswap <<= PAGE_SHIFT;
return;
}
mm/swap的更多相关文章
- PROC 文件系统调节参数介绍(netstat -us)
转自:http://www.cnblogs.com/super-king/p/3296333.html /proc/net/* snmp文件 Ip: ip项 Forwarding : 是 ...
- Linux Cache Mechanism Summary(undone)
目录 . 缓存机制简介 . 内核缓存机制 . 内存缓存机制 . 文件缓存机制 . 数据库缓存机制 1. 缓存机制简介 0x1: 什么是缓存cache 在计算机整个领域中,缓存(cache)这个词是一个 ...
- Careercup - Microsoft面试题 - 5943729928011776
2014-05-10 21:56 题目链接 原题: Suppose you get number of unique users every second from bing For eg, ,,,, ...
- proc 文件系统调节参数介绍
/proc/net/* snmp文件 Ip: ip项 Forwarding : 是否开启ip_forward,1开启,2关闭 DefaultTTL : IP默认ttl. In ...
- systemtap 列出所有linux 内核模块与相关函数0
diskiohttp://blog.163.com/digoal%40126/blog/static/16387704020131015105532435/ [root@localhost linux ...
- Linux内核入门到放弃-页面回收和页交换-《深入Linux内核架构》笔记
概述 可换出页 只有少量几种页可以换出到交换区,对其他页来说,换出到块设备上与之对应的后备存储器即可,如下所述. 类别为 MAP_ANONYMOUS 的页,没有关联到文件,例如,这可能是进程的栈或是使 ...
- Linux 内核源码情景分析 chap 2 存储管理 (四)
物理页面的使用和周转 1. 几个术语 1.1 虚存页面 指虚拟地址空间中一个固定大小, 边界与页面大小 4KB 对齐的区间及其内容 1.2 物理页面 与虚存页面相对的, 须要映射到某种物理存储介质上面 ...
- 【反演复习计划】【bzoj4407】于神之怒加强版
#include<bits/stdc++.h> #define N 5000010 #define yql 1000000007 using namespace std; typedef ...
- 《Cracking the Coding Interview》——第18章:难题——题目6
2014-04-29 02:27 题目:找出10亿个数中最小的100万个数,假设内存可以装得下. 解法1:内存可以装得下?可以用快速选择算法得到无序的结果.时间复杂度总体是O(n)级别,但是常系数不小 ...
随机推荐
- 448. Find All Numbers Disappeared in an Array Add to List
题目描述 题目分析 有个[1,n]的条件要充分利用起来. 题目代码 public class Solution { public List<Integer> findDisappeared ...
- Reapter合并行
html文件: <asp:Repeater ID="rptEmployee" runat="server"> <HeaderTemplate& ...
- TCP连接的状态与关闭方式及其对Server与Client的影响
TCP连接的状态与关闭方式及其对Server与Client的影响 1. TCP连接的状态 首先介绍一下TCP连接建立与关闭过程中的状态.TCP连接过程是状态的转换,促使状态发生转换的因素包括用户调用. ...
- jq 实现发送验证码倒计时功能
var util = { wait:60, hsTime: function (that) { _this = this; if (_this.wait == 0) { $('#hsbtn').rem ...
- 下载zip格式文件(压缩Excel文件为zip格式)
Mongodb配置文件参考这一篇:http://www.cnblogs.com/byteworld/p/5913061.html package util; import java.io.Buffer ...
- 使用WIC组件转换图片格式
#include <windows.h>#include <Wincodec.h>#pragma comment(lib, "Windowscodecs.lib&qu ...
- PHP基础示例:用PHP+Mysql编写简易新闻管理系统[转]
实现目标:使用php和mysql操作函数实现一个新闻信息的发布.浏览.修改和删除操作 实现步骤: 一.创建数据库和表 1.创建数据库和表:newsdb 2.创建表格:news 字段:新闻id,标题,关 ...
- TreeSet和Comparator 对TreeSet排序
使用TreeSet和Comparator,编写TreeSetTestInner类,要求对TreeSet中的元素"HashSet"."ArrayList".&qu ...
- fifo read
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types. ...
- .NET笔试题集(一)
1.简述 private. protected. public. internal.protected internal 访问修饰符和访问权限 private : 私有成员, 在类的内部才可以访问. ...