51nod 1076强连通
Tarjan算法来解这题。无向图可以转化为有向图来解决。
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll __int64
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
struct node
{
int to;
int next;
}edge[MAXN*];
stack<int>s;
int n,m,pre[MAXN],ind,low[MAXN],dfn[MAXN],vis[MAXN],pa[MAXN],ins[MAXN];
void add(int x,int y)
{
edge[ind].to = y;
edge[ind].next = pre[x];
pre[x] = ind ++;
}
int find(int x)
{
if(x != pa[x])pa[x] = find(pa[x]);
return pa[x];
}
void dfs(int rt,int k,int fa)
{
ins[rt] = ;
vis[rt] = ;
low[rt] = dfn[rt] = k;
s.push(rt);
for(int i = pre[rt]; i!=-; i=edge[i].next){
int t = edge[i].to;
if(!dfn[t] && t != fa){
dfs(t,k+,rt);
low[rt] = min(low[t],low[rt]);
}
else if(ins[rt] && t != fa){
low[rt] = min(dfn[t],low[rt]);
}
}
if(low[rt] == dfn[rt]){
while(!s.empty()){
int temp = s.top();
s.pop();
int fx = find(temp);
int fy = find(rt);
if(fx != fy){
pa[fx] = fy;
}
if(temp == rt)break;
}
}
}
int main()
{
while(cin >>n >>m){
ind = ;
for(int i = ; i <= n; i++)pa[i] = i;
memset(ins,,sizeof(ins));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(pre,-,sizeof(pre));
memset(vis,,sizeof(vis));
for(int i = ; i <= m; i++){
int x,y;
cin >>x >>y;
add(x,y);
add(y,x);
} for(int i = ; i<= n; i++){
if(!vis[i]){
dfs(i,,-);
}
} int q;
cin >>q; while(q--){
int x,y;
cin >>x >>y;
if(find(x) == find(y)){
cout<<"Yes"<<endl;
}
else {
cout<<"No"<<endl;
}
}
}
return ;
}
51nod 1076强连通的更多相关文章
- 51nod 1076 2条不相交的路径(边双连通分量)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1076 题意: 思路: 边双连通分量,跑一遍存储一下即可. #includ ...
- AC日记——2条不相交的路径 51nod 1076
1076 2条不相交的路径 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给出一个无向图G的顶点V和边E.进行Q次查询,查询从G的某个顶点V[s] ...
- 51nod 1076 2条不相交的路径
给出一个无向图G的顶点V和边E.进行Q次查询,查询从G的某个顶点V[s]到另一个顶点V[t],是否存在2条不相交的路径.(两条路径不经过相同的边) (注,无向图中不存在重边,也就是说确定起点和终点 ...
- 51nod 1076
* 无向图的割边将图分为不连通的两部分 * 对于是否有不想交的两条路径将s -> t 相连 * 只需判断是否处于同一部分 * Tarjan即可 #include <bits/stdc++. ...
- tarjan相关模板
感性理解: o(* ̄︶ ̄*)o ^_^ \(^o^)/~ 1. 当根节点有大于两个儿子时,割掉它,剩下的点必然不联通(有两个强连通分量),则他为割点. 那么对于非根节点,在无向图G中,刚且仅当点u存 ...
- 51nod 1456【强连通,缩点,并查集】
话说这道题的机遇是看到了http://blog.csdn.net/u010885899/article/details/50611895很有意思:然后就去补了这题 题意: 建最少的边使得给出的点相连. ...
- 51nod图论题解(4级,5级算法题)
51nod图论题解(4级,5级算法题) 1805 小树 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 她发现她的树的点上都有一个标号(从1到n),这些树都在空 ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
随机推荐
- 线程实现方式以及序列化 反序列化.java
一.序列化与反序列化 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上, ...
- 转: 使用Eclipse的Working Set,界面清爽多了
from: http://iyuanbo.iteye.com/blog/1158136 使用Eclipse的Working Set,界面清爽多了 想必大家的Eclipse里也会有这么多得工程... ...
- WMSYS.WM_CONCAT(distinct(字段名)) 函数,字符串拼接函数。合并列
合并列函数 WMSYS.WM_CONCAT(distinct(字段名)) 函数 可以实现字符串拼接在一起,这种情况可以在要求把一个字段的多个值拼接在一起的时候使用.其中distinct可以去掉重复的值 ...
- iOS多线程开发资源抢夺和线程间的通讯问题
说到多线程就不得不提多线程中的锁机制,多线程操作过程中往往多个线程是并发执行的,同一个资源可能被多个线程同时访问,造成资源抢夺,这个过程中如果没有锁机制往往会造成重大问题.举例来说,每年春节都是一票难 ...
- BZOJ 2190: [SDOI2008]仪仗队
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2689 Solved: 1713[Submit][Statu ...
- Swift函数编程之Map、Filter、Reduce
在Swift语言中使用Map.Filter.Reduce对Array.Dictionary等集合类型(collection type)进行操作可能对一部分人来说还不是那么的习惯.对于没有接触过函数式编 ...
- iis 发布MVC HTTP错误 403.14
1. 在web.config增加<modules runAllManagedModulesForAllRequests="true" /> 如:问题依然不能解决.报错貌 ...
- mysql游标循环的使用
CREATE PROCEDURE `test`.`new_procedure` () BEGIN DECLARE done INT DEFAULT FALSE; -- 需要定义接收游标数据的变量 ); ...
- 实时监控log文件
一个进程在运行,并在不断的写log,你需要实时监控log文件的更新(一般是debug时用),怎么办,不断的打开,关闭文件吗? 不用,至少有两个方法,来自两个很常用的命令: tail -f log.tx ...
- TF400916错误修复办法
在使用TFS作为研发过程管理工具的时候,如果调整了工作项的状态信息,可能会出现下面的错误: 要解决此问题非常简单: 1.找一台安装了VS2015程序的环境.因为我们使用的是TFS2015,所以需要对应 ...