用康托展开实现全排列(STL、itertools)
康拓展开:
$X=a_n*(n-1)!+a_{n-1}*(n-2)!+\ldots +a_2*1!+a_1*0!$
X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai<i(1<=i<=n)
这个式子就是康托展开,初看同排列没什么关系,实则不然。下面通过举个例子看一下
一、用康托展开判断一个排列是第几小的
以{1,2,3}为例。我们定义排列的顺序从小到大为123,132,213,231,312,321。
然后我们随便给一个比如312,要判断他在排列中第几大的,则我们可以这样思考,首先第一个比3小可以是1或2,则有2*2!中,第二位比1小,没有,第三位没有。如果说这个不够明显我们看一下321是第几个,首先比3小的2*2!,比2小的1*1!,共2*2!+1*1!=6,。至于其他的各位有兴趣也可以去计算。但这不是我们的重点,我们的重点是得到全排列。
二、康托逆展开
既然康托展开可以判断出某个组合是第几个,那么他是不是也可以构造出第几个排列的值呢?答案是可以的,这里我们叫做康托逆展开。同样的举个例子来看他的工作过程。还是{1,2,3}。现在我们要求出第四大的排列,首先(4-1)%2!=1余1,这个结果表示有有1个数比他小的是2,也就是排列的第一位是2,然后1-1=0则表示没有比第二个大的,即第二个为3,故231。其他例子各位可以自己试。这里给出C++的实现代码
int fac[]={,,,,,,,};
int* cantor(int m,int n)//m is for the size of the set,n is the sequence number
{
bool flag[]={false};
int *ans=new int[];
int i=m;
int j=n-;
while(i--)
{
int temp=(j)/fac[i]+;
int count=-,t;
for(t=;t<m;t++)
{
if(!flag[t])
count++;
if(temp==count)
break;
}
ans[m-i-]=t;
flag[t]=true;
j=(j)%fac[i];
}
//for(int t=0;t<m;t++)
//cout<<ans[t];
//cout<<endl;
return ans;
}
不过写完之后突然发现STL中有实现全排列的函数叫
next_permutation()
有兴趣可以看看
--------------------------------------------------python-----------------------------------------------------------
使用python的话也有一个相应的库iteltools,可以实现排列组合
使用方法见代码
>>>import itertools
>>>list(itertools.permutations([1,2,3,4],4))
[(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2), (2, 1, 3, 4), (2, 1, 4, 3), (2, 3, 1, 4), (2, 3, 4, 1), (2, 4, 1, 3), (2, 4, 3, 1), (3, 1, 2, 4), (3, 1, 4, 2), (3, 2, 1, 4), (3, 2, 4, 1), (3, 4, 1, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2), (4, 3, 2, 1)]
>>>list(itertools.combinations([1,2,3,4],4))
[(1, 2, 3, 4)]
用康托展开实现全排列(STL、itertools)的更多相关文章
- OJ 1188 全排列---康托展开
题目描述 求n的从小到大第m个全排列(n≤20). 输入 n和m 输出 输出第m个全排列,两个数之间有一空格. 样例输入 3 2 样例输出 1 3 2 #include<cstdio> # ...
- P3014 [USACO11FEB]牛线Cow Line && 康托展开
康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...
- LightOJ1060 nth Permutation(不重复全排列+逆康托展开)
一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...
- 康托展开:对全排列的HASH和还原,判断搜索中的某个排列是否出现过
题目:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=2297 前置技能:(千万注意是 ...
- [洛谷P3014][USACO11FEB]牛线Cow Line (康托展开)(数论)
如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里: 简陋的博客 百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行 ...
- UVA11525 Permutation[康托展开 树状数组求第k小值]
UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...
- leetcode 60. Permutation Sequence(康托展开)
描述: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...
- NYOJ--139--我排第几个(康托展开)
我排第几个 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一 ...
- 康托展开&&康托逆展开
康托展开 简介:对于给定的一个排列,求它是第几个,比如54321是n=5时的第120个.(对于不是1~n的排列可以离散化理解) 做法: ans=a[n]*(n-1)!+a[n-1]*(n-2)!+~~ ...
随机推荐
- ext grid 使用combo,不显示display显示value问题
{ text: "附件类型", width: 150, dataIndex: 'uploadType', sortable: true, align: 'left', editor ...
- 【iOS开发-22】navigationBar导航条和navigationItem设置:基本搞定导航条上的文字和按钮以及各种跳转
http://blog.csdn.net/weisubao/article/details/39646739?utm_source=tuicool&utm_medium=referral (1 ...
- eos超时 锁表问题 网友办法
select * from v$locked_object; SELECT sid, serial#, username, osuser FROM v$session where sid = 45; ...
- css3 transition的各种ease效果
http://www.w3school.com.cn/tiy/t.asp?f=css3_transition-timing-function2 linear 平均速度 ease 快启动,慢停止,物理原 ...
- 【MySQL】MySQL 如何实现 唯一随机数ID
如果不是 UUID 好像比较困难 参考资料: http://bbs.csdn.net/topics/390001507 https://www.zhihu.com/question/20151242
- 从其它系统登录到SharePoint 2010系统的单点登录
以前做的只是使用SharePoint的单一登录,用SharePoint去登录其他的系统,现在要反过来,用Form认证的系统来登录SharePoint. 我们都知道,SharePoint使用的是域认证系 ...
- 21. javacript高级程序设计-Ajax与Comet
1. Ajax与Comet 1.1 XMLHttpRequest对象 IE5是第一款引入XHR对象的浏览器,IE5中是通过MSXML库中的一个ActiveX对象实现的.因此在IE中可能存在MSXML2 ...
- 【leetcode】Swap Nodes in Pairs (middle)
Given a linked list, swap every two adjacent nodes and return its head. For example,Given 1->2-&g ...
- 【leetcode】Reverse Integer(middle)☆
Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, return -321 总结:处理整数溢出 ...
- iOS-JavaScript向WKWebView传值
一.本地代码所需操作 1.创建viewController并遵守协议 @interface ViewController ()<WKNavigationDelegate,WKScriptMess ...