一个原来写的题。

既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜。

所以思考一下我们要在第一回合留下线性基

然后就是求线性基,因为要取走的最少,所以排一下序,从大到小求。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#define ll long long
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool cmp(int a,int b){return a>b;}
int n,a[],b[];
ll tot,ans;
int main(){
n=read();
for(int i=;i<=n;i++)a[i]=read();
sort(a+,a++n,cmp);
for(int i=;i<=n;i++)tot+=1ll*a[i];
for(int i=;i<=n;i++){
int t=a[i];
for(int j=;j>=;j--){
if(a[i]&(<<(j-))){
if(!b[j]){b[j]=i;break;}
else a[i]^=a[b[j]];
}
}
if(a[i])ans+=1ll*t;
}
printf("%lld\n",tot-ans);
return ;
}

3105: [cqoi2013]新Nim游戏

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 844  Solved: 493
[Submit][Status][Discuss]

Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
 

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。
 

Output

 
输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6
5 5 6 6 5 5

Sample Output

21

HINT

k<=100

BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基的更多相关文章

  1. 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)

    bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...

  2. bzoj3105 [cqoi2013]新Nim游戏——贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3105 首先,要先手必胜,就不能取后让剩下的火柴中存在异或和为0的子集,否则对方可以取成异或和 ...

  3. BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

    BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...

  4. 【BZOJ3105】新Nim游戏(线性基)

    [BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...

  5. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  6. [CQOI2013]新Nim游戏(线性基)

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  7. bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】

    nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...

  8. 洛谷P4301 [CQOI2013]新Nim游戏(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 后手在什么时候能够获胜呢?只有在他能构造出一个子集的异或和为0时(这个应该是nim博弈的结论了吧) 那么为了必胜,我们就要取到没有子集异或和为0为止 ...

  9. BZOJ3105: [cqoi2013]新Nim游戏

    题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...

随机推荐

  1. DB2 日期相减

    简单方法: 使用 days 字符型的日期:2012-01-01,2012-01-11 values  days(date('2012-01-11')) - days(date('2012-01-01' ...

  2. C# IIS应用程序池辅助类 分类: C# Helper 2014-07-19 09:50 249人阅读 评论(0) 收藏

    using System.Collections.Generic; using System.DirectoryServices; using System.Linq; using Microsoft ...

  3. js setTimeout运用

    js setTimeout运用 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "ht ...

  4. 2-06使用SQL语句创建数据库3

    向现有数据库中添加文件组和数据文件几种方式以及步骤: 第一种:在视图下添加文件组和数据文件. 添加文件组的步骤: 右击你想要添加文件组的数据库点属性,然后点文件组就可以添加. 添加数据文件的步骤: 下 ...

  5. android 入门-Service实时向Activity通过BroadcastReceiver传递数据

    引文: http://www.cnblogs.com/linjiqin/p/3147764.html <RelativeLayout xmlns:android="http://sch ...

  6. 关于三星I9305出现android.process.acore提示问题

    背景:自己用百度云同步通讯录和用微信电话本删除联系人的时候总出现提示acore问题,为此上网找了许久. 网络上多说解决方案为:把Calendar.apk和CalendarProvider.apk两个文 ...

  7. tcflush 功能(转)

    tcflush() 丢弃要写入引用的对象,但是尚未传输的数据,或者收到但是尚未读取的数据,取决于 queue_selector 的值: TCIFLUSH 刷新收到的数据但是不读 TCOFLUSH 刷新 ...

  8. HDU 4812 D Tree 树分治+逆元处理

    D Tree Problem Description   There is a skyscraping tree standing on the playground of Nanjing Unive ...

  9. ado.net增删改查练习

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  10. 使用yum来安装或卸载CentOS图形界面包

    命令行模式安装图形界面 yum grouplist 检查已安装的组 yum groupinstall "X Window System" yum groupinstall &quo ...