POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)
题目链接: 传送门
Agri-Net
Time Limit: 1000MS Memory Limit: 10000K
Description
Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.
Input
The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.
Output
For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.
Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28
Prim算法O(V^2)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX_V = 105;
int edge[MAX_V][MAX_V];
int dis[MAX_V];
bool vis[MAX_V];
int N;
int prim()
{
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
for (int i = 1;i <= N;i++)
{
dis[i] = edge[i][1];
}
dis[1] = 0;
vis[1] = true;
int sum = 0;
for (int i = 1;i < N;i++)
{
int tmp = INF,pos;
for (int j = 1;j <= N;j++)
{
if(!vis[j] && tmp > dis[j])
{
tmp = dis[j];
pos = j;
}
}
if (tmp == INF) return 0;
vis[pos] = true;
sum += dis[pos];
for(int j = 1;j <= N;j++)
{
if (!vis[j] && edge[pos][j] < dis[j])
{
dis[j] = edge[pos][j];
}
}
}
return sum;
}
int main()
{
while (~scanf("%d",&N))
{
for (int i = 1;i <= N;i++)
{
for (int j = 1;j <= N;j++)
{
scanf("%d",&edge[i][j]);
}
}
int res = prim();
printf("%d\n",res);
}
return 0;
}
Prim算法O(ElogV)
#include<iostream>
#include<vector>
#include<queue>
#include<utility>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
typedef pair<int,int>pii; //first 最短距离 second 顶点编号
const int INF = 0x3f3f3f3f;
const int MAX = 105;
struct edge{
int to,cost;
edge(int t,int c):to(t),cost(c){}
};
vector<edge>G[MAX];
int N,dis[MAX];
bool vis[MAX];
int prim()
{
int res = 0;
priority_queue<pii,vector<pii>,greater<pii> >que;
memset(dis,INF,sizeof(dis));
memset(vis,false,sizeof(vis));
dis[1] = 0;
que.push(pii(0,1));
while (!que.empty())
{
pii p = que.top();
que.pop();
int v = p.second;
if (vis[v] || p.first > dis[v]) continue;
vis[v] = true;
res += dis[v];
for (int i = 0;i < G[v].size();i++)
{
edge e = G[v][i];
if (dis[e.to] > e.cost)
{
dis[e.to] = e.cost;
que.push(pii(dis[e.to],e.to));
}
}
}
return res;
}
int main()
{
while (~scanf("%d",&N))
{
int tmp;
for (int i = 1;i <= N;i++)
{
G[i].clear();
for (int j = 1;j <= N;j++)
{
scanf("%d",&tmp);
G[i].push_back(edge(j,tmp));
}
}
int res = prim();
printf("%d\n",res);
}
return 0;
}
Kruskal算法O(ElogV)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = (105*105-105)/2;
struct Edge{
int u,v,w;
};
int N,father[MAX],rk[MAX];
struct Edge edge[MAX];
bool cmp(Edge x,Edge y)
{
return x.w < y.w;
}
void init()
{
memset(father,0,sizeof(father));
memset(rk,0,sizeof(rk));
for (int i = 0;i <= N;i++)
{
father[i] = i;
}
}
int find(int x)
{
int r = x;
while (father[r] != r)
{
r = father[r];
}
int i = x,j;
while (i != r)
{
j = father[i];
father[i] = r;
i = j;
}
return r;
}
/*int find(int x)
{
return x == father[x]?x:father[x] = find(father[x]);
}*/
void unite(int x,int y)
{
int fx,fy;
fx = find(x);
fy = find(y);
if (fx == fy) return;
if (rk[fx] < rk[fy])
{
father[fx] = fy;
}
else
{
father[fy] = fx;
if (rk[x] == rk[y])
{
rk[x]++;
}
}
}
/*void unite(int x,int y)
{
int fx = find(x),fy = find(y);
if (fx != fy)
{
father[fx] = fy;
}
}*/
int main()
{
while (~scanf("%d",&N))
{
int tmp,cnt = 0,sum = 0;
for (int i = 1;i <= N;i++)
{
for (int j = 1;j <= N;j++)
{
scanf("%d",&tmp);
if (i < j)
{
edge[cnt].u = i;
edge[cnt].v = j;
edge[cnt].w = tmp;
cnt++;
}
}
}
init();
sort(edge,edge+cnt,cmp);
for (int i = 0;i < cnt;i++)
{
int x,y;
x = find(edge[i].u);
y = find(edge[i].v);
if (x != y)
{
unite(x,y);
sum += edge[i].w;
}
}
printf("%d\n",sum);
}
return 0;
}
POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)的更多相关文章
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 数据结构学习笔记05图(最小生成树 Prim Kruskal)
最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路 |V|个顶 ...
- 布线问题 最小生成树 prim + kruskal
1 : 第一种 prime 首先确定一个点 作为已经确定的集合 , 然后以这个点为中心 , 向没有被收录的点 , 找最短距离( 到已经确定的点 ) , 找一个已知长度的最小长度的 边 加到 s ...
- POJ 1258 Agri-Net(最小生成树,模板题)
用的是prim算法. 我用vector数组,每次求最小的dis时,不需要遍历所有的点,只需要遍历之前加入到vector数组中的点(即dis[v]!=INF的点).但其实时间也差不多,和遍历所有的点的方 ...
- POJ 1258 Agri-Net (最小生成树)
Agri-Net 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/H Description Farmer John has be ...
- POJ 1751 Highways(最小生成树&Prim)题解
思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...
- 最小生成树-Prim&Kruskal
Prim算法 算法步骤 S:当前已经在联通块中的所有点的集合 1. dist[i] = inf 2. for n 次 t<-S外离S最近的点 利用t更新S外点到S的距离 st[t] = true ...
- 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...
随机推荐
- HDU1281-棋盘游戏-二分图匹配
先跑一个二分图匹配,然后一一删去匹配上的边,看能不能达到最大匹配数,不能这条边就是重要边 /*----------------------------------------------------- ...
- favicon.ico文件简介
本地调试时,控制台经常会打印如下的错误(对 favicon.ico 的请求在 chrome 调试面板下不可见,可在抓包工具,比如 Fiddler 中看到): favicon.ico 是啥?看下面这张图 ...
- WPF循环加载图片导致内存溢出的解决办法
程序场景:一系列的图片,从第一张到最后一张依次加载图片,形成“动画”. 生成BitmapImage的方法有多种: 1. var source=new BitmapImage(new Uri(" ...
- 学习Google Protocol buffer之概述
XML这种属于非常强大的一种格式,能存储任何你想存的数据,而且编辑起来还是比较方便的.致命的缺陷在于比较庞大,在某些情况下,序列化和解析都会成为瓶颈.这种对于实时性很强的应用来说,就不太适合了,想象下 ...
- 前端框架——AmazeUI学习
AmazeUI官网: http://amazeui.org/ 前后台模板下载:链接:链接:http://pan.baidu.com/s/1c2uVfk0 密码:zuva 十大前端框架参考链接:http ...
- Activity之多启动图标
如果想要Activity有多个启动图标,只需要在manifest.xml文件中配置一下就可以了,直接上代码: 1 <application 2 android:allowBackup=" ...
- 链接错误-库冲突(libcmt.lib和libcmtd.lib)
在同一个项目中,所有的源文件必须链接相同的C运行时库.如果某一文件用了Multithreaded DLL版本,而其他文件用了Single-Threaded或者Multithreaded版本的库,也就是 ...
- python学习笔记整理——列表
Python 文档学习笔记 数据结构--列表 列表的方法 添加 list.append(x) 添加元素 添加一个元素到列表的末尾:相当于a[len(a):] = [x] list.extend(L) ...
- oracle 学习笔记
--2.2 进入和退出oracle数据库--在windows中输入cmd打开命令窗口 然后输入 sqlplu / as sysdba--验证数据库是否安装成功 --select status from ...
- java 常用的一些关键字
1.关键字extends 1.继承作用 优化代码,减少代码的重复使用. 2.继承使用时机 两个类之间必须要满足is a的关系 ,才能够拥有继承关系,不是任 何 情况下都允许继承 3.继承的使用注意事项 ...