题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4911

题目大意:最多可以交换K次,就最小逆序对数

解题思路

逆序数定理,当逆序对数大于0时,若ak<ak+1,那么交换后逆序对数+1,反之-1。

设原始序列最小逆序对数=cnt

那么,交换K次的最小逆序对数max(0,cnt-k)

在求原始序列最小逆序对数上,朴素暴力复杂度O(n^2)不可取

有以下两种O(nlogn)的方法:

①排序内计算:

主要是利用归并排序内的特性,即相邻两个归并序列逆序情况不改变,[5,4,2,1]到[4,5]、[1,2]

在排序纠正逆序之后,4和1,5和2的逆序情况没有改变。利用这个性质,只要在归并排序对两个子序列merge排序时,统计逆序对数即可。

即,边排序,边统计,假设left、right序列是递归传递过来的序列从0开始重新编号之后,初始偏移,i=j=0

当left[i]>right[j]出现逆序情况时,cnt+=(leftnum-i),即当前right[j]元素和left[i]及以后元素都构成逆序对。

归并后,递归继续merge更大的序列。统计复杂度=排序复杂度O(nlogn)

注意归并排序的写法,left尾和right尾要设为inf,这样后跑完的序列会直接和inf比较。

g#include "cstdio"
#include "algorithm"
#define LL long long
using namespace std;
int a[];
LL cnt=;
void merge(int l,int m,int r)
{
int lnum=m-l+,rnum=r-m;
int *LEFT=new int[lnum+],*RIGHT=new int[rnum+];
for(int i=;i<lnum;i++) LEFT[i]=a[l+i];
for(int i=;i<rnum;i++) RIGHT[i]=a[m++i];
LEFT[lnum]=RIGHT[rnum]=0x3fffffff;
int i=,j=;
for(int k=l;k<=r;k++)
{
if(LEFT[i]<=RIGHT[j])
{
a[k]=LEFT[i];
i++;
}
else
{
a[k]=RIGHT[j];
j++;
cnt+=(lnum-i);
}
}
}
void mergeSort(int l,int r)
{
if(l<r)
{
int m=(r-l)/+l;
mergeSort(l,m);
mergeSort(m+,r);
merge(l,m,r);
}
}
int main()
{
//freopen("in.txt","r",stdin);
int n,k;
while(scanf("%d%d",&n,&k)!=EOF)
{
cnt=;
for(int i=;i<n;i++) scanf("%d",&a[i]);
mergeSort(,n-);
printf("%I64d\n",max((LL),cnt-k));
}
}

②树状数组:

很奇葩的方法。首先使用记录原始位置pos的排序,然后对排序后的元素进行离散化处理。

如序列5,1,1,离散化成2,1,1,树状数组sum[i]记录的是离散化位置被激活的次数,即add(Hash[i],1)

如离散化位置1,2,初始值[0,0], 首先按照输入顺序add离散化位置。

输入5,sum情况[0,1],那么树状数组getsum统计的是,在到此数的顺序数组上,被激活的个数。

用原始位置i-getsum,结果是,不含这个数,之前被激活的个数,即统计逆序情况。

如此时就是1,,这里由于1-1=0,即在5之前没有逆序对。

输入1,sum情况[1,1],getsum=1,i-getsum=1,有一个逆序对。[5,1],原因是5在1之前激活了。

输入1,sum情况[2,1],getsum=2, i-getsum=1,有一个逆序对。这里要对重复的数做add,因为重复的数,i增加了,

getsum也要对应的增加,不然,会和前面重复数的算重了,比如3-1=2,,就是算重了。

#include "cstdio"
#include "algorithm"
#include "cstring"
#include "map"
using namespace std;
#define LL long long
int sum[],n,k,val,N;
LL cnt;
int lowbit(int x) {return x&(-x);}
struct Num
{
int val,pos;
Num() {}
Num(int val,int pos):val(val),pos(pos) {}
bool operator < (const Num &a) const {return val<a.val;}
}a[];
LL getsum(int x)
{
LL ret=;
while(x>)
{
ret+=sum[x];
x-=lowbit(x);
}
return ret;
}
void update(int x,int d)
{
while(x<=N)
{
sum[x]+=d;
x+=lowbit(x);
}
}
int main()
{
freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(sum,,sizeof(sum));
map<LL,LL> Hash;
cnt=;
for(int i=;i<n;i++)
{
scanf("%d",&val);
a[i]=Num(val,i);
}
sort(a,a+n);
int id=;
Hash[a[].pos]=id;
for(int i=;i<n;i++) //离散化
{
if(a[i].val==a[i-].val) Hash[a[i].pos]=id;
else Hash[a[i].pos]=++id;
}
N=id;
for(int i=;i<n;i++)
{
update(Hash[i],);
cnt+=(i+-getsum(Hash[i]));
}
printf("%I64d\n",max((LL),cnt-k));
}
}

HDU 4911 (树状数组+逆序数)的更多相关文章

  1. hdu2838Cow Sorting(树状数组+逆序数)

    题目链接:点击打开链接 题意描写叙述:给定一个长度为100000的数组,每一个元素范围在1~100000,且互不同样,交换当中的随意两个数须要花费的代价为两个数之和. 问怎样交换使数组有序.花费的代价 ...

  2. HDU5196--DZY Loves Inversions 树状数组 逆序数

    题意查询给定[L, R]区间内 逆序对数 ==k的子区间的个数. 我们只需要求出 子区间小于等于k的个数和小于等于k-1的个数,然后相减就得出答案了. 对于i(1≤i≤n),我们计算ri表示[i,ri ...

  3. HDU3465 树状数组逆序数

    Life is a Line Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)T ...

  4. hdu 4638 树状数组 区间内连续区间的个数(尽可能长)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  7. HDU 1394 树状数组+离散化求逆序数

    对于求逆序数问题,学会去利用树状数组进行转换求解方式,是很必要的. 一般来说我们求解逆序数,是在给定一串序列里,用循环的方式找到每一个数之前有多少个比它大的数,算法的时间复杂度为o(n2). 那么我们 ...

  8. hdu 5497 Inversion 树状数组 逆序对,单点修改

    Inversion Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5497 ...

  9. HDU 2689Sort it 树状数组 逆序对

    Sort it Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

随机推荐

  1. php连接sql server

    这两天有个php连接sql server的项目,顺便学习学习sql server  说明: 1:PHP5.2.x本身有个php_mssql.dll的扩展用来连接Sql server,但是这个dll只是 ...

  2. SAE云平台上传图片和发送邮件

    1.远程图片保存至Storage 其中public是Storage中的容器名,"目录1/目录2/"是容器下的路径 $file_content 是得到的文件数据 $s = new S ...

  3. iOS 判断第一个字符是数字还是汉字

       NSString *titleStr = @"琳小兮";  //先截取字符串,拿到第一个字符         NSString *firstStr = [titleStr s ...

  4. **PHP中替换换行符

    PHP中替换换行符 php 不同系统的换行不同系统之间换行的实现是不一样的linux 与unix中用 \nMAC 用 \rwindow 为了体现与linux不同 则是 \r\n所以在不同平台上 实现方 ...

  5. mysql基础一

    一.概述 1.什么是数据库 ? 答:数据的仓库,如:在ATM的示例中我们创建了一个 db 目录,称其为数据库 2.什么是 MySQL.Oracle.SQLite.Access.MS SQL Serve ...

  6. hdu 2203:亲和串(水题,串的练习)

    亲和串 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. 分享一个最近研究的手机QQ3.0的协议(版本1.4)

    最近闲来有事, 分析了一个非常低端(非常低端的意思是说你不应该对她是否能取代你现有的QQ客户端作任何可能的奢望,她只是一个实验性的东西)的手机QQ的协议, 是手机QQ3.0,      所用到的TCP ...

  8. git branch用法总结

    git branch      git branch 不带参数:列出本地已经存在的分支,并且在当前分支的前面加“*”号标记,例如:   #git branch* master   newbranch ...

  9. 攻城狮在路上(叁)Linux(二十七)--- 压缩与打包之常见的压缩命令

    前面讲到,linux中的后缀名没有特殊的意义,一般是作为不同文件类型的标识而已.下面是与打包.压缩相关的后缀名介绍: *.z:compress程序压缩文件 *.gz:gzip程序压缩文件 *.bz2: ...

  10. STUN和TURN技术浅析

    转自:http://blog.csdn.net/yu_xiang/article/details/9227023 在现实Internet网络环境中,大多数计算机主机都位于防火墙或NAT之后,只有少部分 ...