题目

Source

http://acm.hdu.edu.cn/showproblem.php?pid=5739

Description

Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex is attached with a weight wi. Let Gi be the graph after deleting the i-th vertex from graph G. Professor Zhang wants to find the weight of G1,G2,...,Gn.

The weight of a graph G is defined as follows:

1. If G is connected, then the weight of G is the product of the weight of each vertex in G.
2. Otherwise, the weight of G is the sum of the weight of all the connected components of G.

A connected component of an undirected graph G is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in G.

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m (2≤n≤105,1≤m≤2×105) -- the number of vertices and the number of edges.

The second line contains n integers w1,w2,...,wn (1≤wi≤109), denoting the weight of each vertex.

In the next m lines, each contains two integers xi and yi (1≤xi,yi≤n,xi≠yi), denoting an undirected edge.

There are at most 1000 test cases and ∑n,∑m≤1.5×106.

Output

For each test case, output an integer $S = (\sum\limits_{i=1}^{n}i\cdot z_i) \text{ mod } (10^9 + 7)$, where zi is the weight of Gi.

Sample Input

1
3 2
1 2 3
1 2
2 3

Sample Output

20

分析

题目大概说给一张无向点带有权无向图。定义连通图的权值为图中各点权的乘积,图的权值为其包含的各连通图的权和。设$z_i$为删除i点后图的权值,求$S = (\sum\limits_{i=1}^{n}i\cdot z_i) \text{ mod } (10^9 + 7)$。

官方题解这么说的:

显然, 只要删掉关键点才会使图不联通. 对于其他点, 权值很容易计算.

首先求出所有的点双联通分量, 对于每一个点双联通分量$S$, 新建一个节点$s$, 向$S$中每个节点$v$连边. 这样一来, 新增的点和原来图中的点会构成一个森林(据说这个有个名字, block forest data structure). 很容易观察到, 叶子节点肯定都是非关键点, 内部节点要么是关键点, 要么是新增的节点.

对于这个森林$F$, 删掉一个关键点或者一个叶子$i$之后, 会得到一个新森林$F_i$​​, 这个$F_i$​​对应的连通块集合和$G_i$对应的连通块集合其实是一样的(不考虑那些新增的点). 显然$G_i$的权值和$F_i$​​的权值也是一样的, $F_i$的权值我们很容易通过树形dp算出来, 那么$G_i$的权值也随之而出.

可以在网上搜到关于用那个BF在线性时间计算所有关节点的影响的论文。。里面有这么一张图:

这样就好理解了。

设新加圆形结点的权为1,在那棵构造出来的树中用dp求出各个结点的两个信息:

  • pro[u]表示u为根的子树内各个结点权值的乘积
  • sum[u]表示Σpro[v](u为原本图中的结点,v为u的孩子结点)

最后通过枚举要删除的各个点,再加上乘法逆元搞搞,就能直接通过这两个信息很快地求出删除某结点后新的总权值。

另外。。有个地方空间开太小WA了好久。。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 111111
#define MAXM 222222 struct Edge{
int v,flag,next;
}edge[MAXM<<1];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].flag=0; edge[NE].next=head[u];
head[u]=NE++;
} struct TEdge{
int v,next;
}tEdge[MAXM<<4];
int tNE,tHead[MAXN<<1];
void addEdge(int u,int v,int nothing){
tEdge[tNE].v=v; tEdge[tNE].next=tHead[u];
tHead[u]=tNE++;
} int dn,dfn[MAXN],low[MAXN];
int stack[MAXM],top;
int root[MAXN],rn; void tarjan(int u,int rt){
dfn[u]=low[u]=++dn;
for(int i=head[u]; i!=-1; i=edge[i].next){
if(edge[i].flag) continue;
edge[i].flag=edge[i^1].flag=1;
stack[++top]=i; int v=edge[i].v; if(dfn[v]){
low[u]=min(low[u],dfn[v]);
continue;
} tarjan(v,rt);
low[u]=min(low[u],low[v]); if(low[v]>=dfn[u]){
++rn;
int k;
do{
k=stack[top--];
root[edge[k].v]=rt;
root[edge[k^1].v]=rt;
addEdge(rn,edge[k].v,0);
addEdge(edge[k].v,rn,0);
addEdge(rn,edge[k^1].v,0);
addEdge(edge[k^1].v,rn,0);
}while(edge[k^1].v!=u);
}
}
} int n,weight[MAXN]; bool vis[MAXN<<1];
long long sum[MAXN<<1],pro[MAXN<<1];
void dfs(int u){
vis[u]=1;
sum[u]=0; pro[u]=(u<=n) ? weight[u] : 1;
for(int i=tHead[u]; i!=-1; i=tEdge[i].next){
int v=tEdge[i].v;
if(vis[v]) continue;
dfs(v);
if(u<=n){
sum[u]+=pro[v];
sum[u]%=1000000007;
}
pro[u]*=pro[v];
pro[u]%=1000000007;
}
} long long ine(long long x){
long long res=1;
int n=1000000007-2;
while(n){
if(n&1){
res*=x; res%=1000000007;
}
x*=x; x%=1000000007;
n>>=1;
}
return res;
} int main(){
int t,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1; i<=n; ++i){
scanf("%d",weight+i);
} NE=0;
memset(head,-1,sizeof(head));
int a,b;
while(m--){
scanf("%d%d",&a,&b);
addEdge(a,b);
addEdge(b,a);
} dn=0; memset(dfn,0,sizeof(dfn));
rn=n; memset(root,0,sizeof(root));
top=0;
tNE=0; memset(tHead,-1,sizeof(tHead));
for(int i=1; i<=n; ++i){
if(dfn[i]==0) tarjan(i,rn+1);
} long long tot=0; memset(vis,0,sizeof(vis));
for(int i=1; i<=n; ++i){
if(vis[i]) continue;
if(root[i]){
dfs(root[i]);
tot+=pro[root[i]];
tot%=1000000007;
}else{
tot+=weight[i];
tot%=1000000007;
}
} long long ans=0; for(int i=1; i<=n; ++i){
if(root[i]){
ans+=(tot-pro[root[i]]+pro[root[i]]*ine(pro[i])%1000000007+sum[i])%1000000007*i;
ans%=1000000007;
}else{
ans+=(tot-weight[i])*i;
ans%=1000000007;
}
} if(ans<0) ans+=1000000007;
printf("%lld\n",ans);
}
return 0;
}

HDU5739 Fantasia(点双连通分量 + Block Forest Data Structure)的更多相关文章

  1. [HDU5739]Fantasia(圆方树DP)

    题意:给一张无向点带有权无向图.定义连通图的权值为图中各点权的乘积,图的权值为其包含的各连通图的权和.设z_i为删除i点后图的权值,求$S = (\sum\limits_{i=1}^{n}i\cdot ...

  2. HDU5739 Fantasia【点双连通分量 割点】

    HDU5739 Fantasia 题意: 给出一张\(N\)个点的无向图\(G\),每个点都有权值\(w_i\),要求计算\(\sum_{i=1}^{N}i\cdot G_i % 1e9+7\) 其中 ...

  3. HDU 5739 Fantasia 双连通分量 树形DP

    题意: 给出一个无向图,每个顶点有一个权值\(w\),一个连通分量的权值为各个顶点的权值的乘积,一个图的权值为所有连通分量权值之和. 设删除顶点\(i\)后的图\(G_i\)的权值为\(z_i\),求 ...

  4. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  5. 【POJ 2942】Knights of the Round Table(点双连通分量,二分图染色)

    圆桌会议必须满足:奇数个人参与,相邻的不能是敌人(敌人关系是无向边). 求无论如何都不能参加会议的骑士个数.只需求哪些骑士是可以参加的. 我们求原图的补图:只要不是敌人的两个人就连边. 在补图的一个奇 ...

  6. 【POJ 3177】Redundant Paths(边双连通分量)

    求出每个边双连通分量缩点后的度,度为1的点即叶子节点.原图加上(leaf+1)/2条边即可变成双连通图. #include <cstdio> #include <cstring> ...

  7. Knights of the Round Table-POJ2942(双连通分量+交叉染色)

    Knights of the Round Table Description Being a knight is a very attractive career: searching for the ...

  8. poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 9169   Accep ...

  9. POJ3352 Road Construction (双连通分量)

    Road Construction Time Limit:2000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u Sub ...

随机推荐

  1. [Android Pro] 关于inputStream.available()方法获取文件的总大小

    reference to :http://hold-on.iteye.com/blog/1017449 如果用inputStream对象的available()方法获取流中可读取的数据大小,通常我们调 ...

  2. August 14th, Week 34th Sunday, 2016

    To live is to function, that is all there is in living. 活着就要发挥作用,这就是生活的全部内容. I often joke that my dr ...

  3. 谈谈我的编程之路---WAMP(二)

    WAMP的一些配置与使用心得(MYSQL) 刚开始接触数据库的时候,我一直认为数据库操作工具和数据库是同一种东西,它们是一体的,后来我才明白,数据库它是一个独立的仓库,用官方点的话来解释 数据库(Da ...

  4. Vi 的基本使用

    一.Vi入门  Unix 提供了全屏幕的Vi编辑器,这使我们的工作轻松不少.不少DOS用户抱怨Vi编辑器不象DOS下的编辑器如edit那么好用,这 是因为Vi考虑到各种用户的需要,没有使用某些通用的编 ...

  5. bootstratp图标的使用

    bootstratp作为一个优秀的前端框架,最近使用了其中的Glyphicon Halflings的字体图标.起初一直显示不出来,后面通过搜索相关资料直到成功显示,在此做一些总结,方便后面复习. 1. ...

  6. Android Programming: Pushing the Limits -- Chapter 2: Efficient Java Code for Android

    Android's Dalvik Java 与 Java SE 进行比较 Java代码优化 内存管理与分配 Android的多线程操作 Android’s Dalvik Java 与 Java SE ...

  7. Delphi线程同步(临界区、互斥、信号量)

    当有多个线程的时候,经常需要去同步这些线程以访问同一个数据或资源. 例如,假设有一个程序,其中一个线程用于把文件读到内存,而另一个线程用于统计文件的字符数.当然,在整个文件调入内存之前,统计它的计数是 ...

  8. Shell编程基础教程1--Shell简介

    1.Shell简介 1.1.查看你系统shell信息 cat /etc/shell 命令可以获取Linux系统里面有多少种shell程序 echo $SHELL 命令可以查看当前你所使用的shell是 ...

  9. SQLAlchemy Core中的异常及事务处理样码

    这部门内容比较简单,立存. #coding=utf-8 from datetime import datetime from sqlalchemy import (MetaData, Table, C ...

  10. win7Java开发环境配置

    win7下Java开发环境的配置 首先下载符合操作系统版本的jdk,比如最新的jdk8: 下载链接:http://www.oracle.com/technetwork/java/javase/down ...