Binary Tree Non-recursive Traversal
Preorder:
因为是preorder traversal, 我们需要先print root,然后左节点,最后右节点,而且root左边子树一定比右边子树先print出来,所以,我们可以先把当前root的右节点压栈,然后把root的左节点压栈,这样每次从栈里取的时候,可以保证左边节点的root先取。同时,每次取了当前节点,我们进行同样的操作(先压右节点,再压左节点),这样可以保证preorder traversal。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
if (root == null) return list;
Stack<TreeNode> s = new Stack<TreeNode>();
s.push(root);
while (!s.empty()) {
TreeNode node = s.pop();
list.add(node.val);
if (node.right != null) {s.push(node.right);}
if (node.left != null) {s.push(node.left);}
}
return list;
}
}
Inorder:
因为inorder 需要先打印最左边,然后root,然后最右边,所以,我们一定要先reach到树的最左边,直到没有左子树为止,并同时把root加入到stack里。
当当前node没有左子树,表面我们已经到达树的最左边,我们需要把stack最上面的root打出来,然后当前root指向root.right. 然后把右子树当成一颗树使用同样的遍历即可。这题的关键点之一是那个while条件,也就是说,只要stack不为空或者当前node不是null, 我们就应该继续。
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>(); while(!stack.isEmpty() || root != null) {
if (root != null) {
stack.push(root);
root = root.left;
} else {
root = stack.pop();
list.add(root.val);
root = root.right;
}
}
return list;
}
}
Postorder:
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new LinkedList<>();
if (root == null) return list; Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()) {
root = stack.pop();
list.add(, root.val);
if (root.left != null) { stack.push(root.left); }
if (root.right != null) { stack.push(root.right); }
}
return list;
}
}
Binary Tree Non-recursive Traversal的更多相关文章
- [LeetCode] Binary Tree Vertical Order Traversal 二叉树的竖直遍历
Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bott ...
- [LeetCode] Binary Tree Level Order Traversal II 二叉树层序遍历之二
Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left ...
- [LeetCode] Binary Tree Level Order Traversal 二叉树层序遍历
Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...
- LeetCode Binary Tree Vertical Order Traversal
原题链接在这里:https://leetcode.com/problems/binary-tree-vertical-order-traversal/ 题目: Given a binary tree, ...
- 【leetcode】Binary Tree Level Order Traversal I & II
Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...
- LeetCode之Binary Tree Level Order Traversal 层序遍历二叉树
Binary Tree Level Order Traversal 题目描述: Given a binary tree, return the level order traversal of its ...
- 35. Binary Tree Level Order Traversal && Binary Tree Level Order Traversal II
Binary Tree Level Order Traversal OJ: https://oj.leetcode.com/problems/binary-tree-level-order-trave ...
- LeetCode:Binary Tree Level Order Traversal I II
LeetCode:Binary Tree Level Order Traversal Given a binary tree, return the level order traversal of ...
- 【Binary Tree Level Order Traversal II 】cpp
题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...
- lettcode-102:Binary Tree Level Order Traversal (Java)
Binary Tree Level Order Traversal 二叉树的层序遍历 两种方式: 1.用两个queue交替表示每一层的节点 2.用两个node,一个表示当前层的最后一个节点,一个表示下 ...
随机推荐
- 单元测试写cookie
我们在开发WEB项目的时候,一般应用逻辑跟ASPX页面是分离的项目.应用逻辑一般会是一个DLL组件项目.如果这个组件项目中A方法使用了Session.Cookie等信息的读写,则这个方法就很难写单元测 ...
- java enum类
1.可以在enum中添加变量和方法 先来看一段代码示例: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...
- Java学习之Hessian通信基础
一.首先先说Hessian是什么? Hessian:hessian是一个轻量级的remoting onhttp工具,使用简单的方法提供了RMI的功能,相比WebService,Hessian更简 ...
- hibernate4中使用Session doWork()方法进行jdbc操作(代码)
Hibernate3.3.2版本中getSession().connection()已被弃用,hibernate4中官方推荐使用Session doWork()方法进行jdbc操作 首先看看Work接 ...
- Entity Framework实例详解
Entity Framework Code First的默认行为是使用一系列约定将POCO类映射到表.然而,有时候,不能也不想遵循这些约定,那就需要重写它们.重写默认约定有两种方式:Data Anno ...
- Sublime Text 3初阶
本文主要介绍一些Sublime Text3的初级阶段,主要从最初的安装,到插件,还有主题这三个方面介绍,还会提到一些关于使用ST3的一些小小经验... 一:安装 首先进入sublime的官方地址去下载 ...
- 2015年11月30日 spring初级知识讲解(一)装配Bean
序,Spring的依赖注入是学习spring的基础.IOC为控制反转,意思是需要的时候就由spring生成一个,而不是先生成再使用. 写在前面 Spring提供面向接口编程,面向接口编程与依赖注入协作 ...
- ios如何普安短图片类型
很多时候需要知道服务器返回的图片是.png还是.jpg或者是.git, 两种方式 1,获取扩展名 //图片 NSString *image = @"4351141241.GIT&quo ...
- C++ Const引用详解
(1) 在实际的程序中,引用主要被用做函数的形式参数--通常将类对象传递给一个函数.引用必须初始化. 但是用对象的地址初始化引用是错误的,我们可以定义一个指针引用. 1 int ival ...
- button 按钮
<!DOCTYPE html> <html> <body> <h1>我的第一段 JavaScript</h1> <p> Java ...