http://www.lydsy.com/JudgeOnline/problem.php?id=2730 (题目链接)

题意

  给出一张图,问如果删掉其中一个点,使得其他每个节点都有一个安全撤离的出口,最少需要设立多少个出口,有多少种方案。

Solution

  很明显,一张图至少要设立2个出口(一个点双连通分量),如果删掉不是割点的点,对答案不会有什么限制,考虑删掉的点是割点。

  我们对割点以外的联通快进行染色,每一种颜色就表示在这些同样的颜色中的节点至少要设置一个出口,若一个节点被染成了多种颜色,那么表明在此处设立出口不是最优的。

细节

  十个Tarjan五个错。。注意判断割点的条件,当判断搜索树根是不是割点时,有点小麻烦。另外,染色的时候不走割点。

代码

// bzoj2730
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1010;
struct edge {int to,next;}e[maxn<<1];
int low[maxn],dfn[maxn],head[maxn],cut[maxn],vis[maxn],id[maxn],sum[maxn];
int cnt,ind,m,n; void Init() {
cnt=ind=n=0;
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(cut,0,sizeof(cut));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(sum,0,sizeof(sum));
memset(id,0,sizeof(id));
}
void link(int u,int v) {
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;
e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;
}
void Tarjan(int x,int fa,int rt) {
int tot=0;
dfn[x]=low[x]=++ind;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
if (!dfn[e[i].to]) {
Tarjan(e[i].to,x,rt);
low[x]=min(low[x],low[e[i].to]);
if (low[e[i].to]>=dfn[x] && x!=rt) cut[x]=1; //important
else if (x==rt) tot++;
}
else low[x]=min(low[x],dfn[e[i].to]);
}
if (tot>1) cut[x]=1; //important
}
void dfs(int x,int col) {
vis[x]=cnt;
if (!id[x]) id[x]=col;
else id[x]=-1;
for (int i=head[x];i;i=e[i].next)
if (vis[e[i].to]!=cnt && !cut[e[i].to]) dfs(e[i].to,col);
}
int main() {
int T=0;
while (1) {
scanf("%d",&m);
if (m==0) break;
printf("Case %d: ",++T);
Init();
for (int u,v,i=1;i<=m;i++) {
scanf("%d%d",&u,&v);
link(u,v);n=max(n,max(u,v));
}
for (int i=1;i<=n;i++) if (!dfn[i]) Tarjan(i,0,i);
cnt=0;int col=0;
for (int i=1;i<=n;i++) if (cut[i]) {
cnt++;
for (int j=head[i];j;j=e[j].next)
if (vis[e[j].to]!=cnt && !cut[e[j].to]) dfs(e[j].to,++col);
}
for (int i=1;i<=n;i++) if (id[i]!=-1) sum[id[i]]++;
int tot=0;LL ans=1;
for (int i=1;i<=col;i++) if (sum[i]) tot++,ans=ans*sum[i];
if (!tot) printf("2 %d\n",n*(n-1)/2);
else printf("%d %lld\n",tot,ans);
}
return 0;
}

  

【bzoj2730】 HNOI2012—矿场搭建的更多相关文章

  1. bzoj2730 [HNOI2012]矿场搭建 (UVAlive5135 Mining Your Own Business)

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Statu ...

  2. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  3. BZOJ2730——[HNOI2012]矿场搭建

    bzoj2730 & world final 2011 H 1.题目大意:就是有一个无向图,让你在里面选择点,使得,无论哪个点没了以后,其他的点都能到达你选择的任何一个点,输出最少 选择几个点 ...

  4. BZOJ2730 [HNOI2012]矿场搭建 - Tarjan割点

    Solution 输入中没有出现过的矿场点是不用考虑的, 所以不用考虑只有 一个点 的点双联通分量. 要使某个挖矿点倒塌, 相当于割去这个点, 所以我们求一遍割点和点双联通分量. 之后的点双联通分量构 ...

  5. BZOJ2730: [HNOI2012]矿场搭建

    传送门 图的连通性相关的必和割点割边之类的有关. 题目要求对于一个无向图,任意一点被删除后,所有点都和某些指定点是联通的. 这道题比较简单的做法就是求出来所有的块.对于一个块,如果块里有两个及两个以上 ...

  6. [BZOJ2730][HNOI2012]矿场搭建(求割点)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2730 分析: 如果坍塌的点不是割点,那没什么影响,主要考虑坍塌的点是割点的情况. 显然 ...

  7. 【双连通分量】Bzoj2730 HNOI2012 矿场搭建

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  8. BZOJ2730:[HNOI2012]矿场搭建(双连通分量)

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  9. BZOJ2730 [HNOI2012]矿场搭建[点双连通分量]

    看到删去一个点,需要剩下的都和关键点连通,有端联想到找点双,因为他怎么删点都是连通的. 对于一个孤立的点双,至少要设两个关键点. 如果两个点双以一个割点连接,假设断掉这个割点,两个块至少要各设一个关键 ...

  10. [BZOJ2730]:[HNOI2012]矿场搭建(塔尖)

    题目传送门 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个 ...

随机推荐

  1. [Azure] 使用 Azure 快速搭建 Redis 服务器

    Redis相信玩开源,大数据的朋友们并不陌生,大家最熟悉的使用者就是新浪微博,微博的整体数据缓存都是基于Redis的,而新浪对Redis的使用也非常深,据说是一组64G内存的Redis集群.前段时间我 ...

  2. Cordova - 与iOS原生代码交互1(通过JS调用Swift方法)

    在前面的文章中介绍的了如何使用Cordova进行跨平台应用的开发,使用Cordova的话基本上就不需要在写系统原生代码了,只要通过编写html页面和js方法即可. 但在有些特殊情况下,还是是需要htm ...

  3. c++ 指针(二)

    函数指针 可以使用算法的地址传递给方法,传递之前要先完成以下工作 1.获取函数的地址 2.声明一个函数指针 3.使用函数指针来调用函数 1.获取函数的地址,只要使用函数名就可以 Fun2(Fun1); ...

  4. Eclipse 反编译插件JadClipse安装

    下载jadClipse地址: 链接: http://pan.baidu.com/s/1kTN4TPd  提取码: 3fvd 将net.sf.jadclipse_3.3.0.jar拷贝到eclipse的 ...

  5. 套用GGTalk做项目的经验总结——GGTalk源码详解系列(一)

    坦白讲,我们公司其实没啥技术实力,之所以还能不断接到各种项目,全凭我们老板神通广大!要知道他每次的饭局上可都是些什么人物! 但是项目接下一大把,就凭咱哥儿几个的水平,想要独立自主.保质保量保期地一个个 ...

  6. [leetcode]算法题目 - Sudoku Solver

    最近,新加坡总理李显龙也写了一份代码公布出来,大致瞧了一眼,竟然是解数独题的代码!前几天刚刚写过,数独主要算法当然是使用回溯法.回溯法当时初学的时候在思路上比较拧,不容易写对.写了几个回溯法的算法之后 ...

  7. [BZOJ1579][Usaco2009 Feb]Revamping Trails 道路升级(二维最短路问题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1579 分析: 设d[i][j]表示从1走到i.改了j条边的最短路径长度 如果设i相连的 ...

  8. 隐马尔可夫模型(Hidden Markov Model,HMM)

    介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首 ...

  9. Jquery-EasyUI学习2~

    下面这个Demo用的是MVC+Ado.Net.存储过程 实现功能:分页查询,添加.修改功能.模糊查询功能 先来几张效果图: 创建存储过程如下 go create proc usp_FenYe2 @se ...

  10. Cadence Allegro元件封装制作流程

    (本文为转载,原文出处不详) 引言 一个元件封装的制作过程如下图所示.简单来说,首先用户需要制作自己的焊盘库Pads,包括普通焊盘形状Shape Symbol和花焊盘形状Flash Symbol:然后 ...