Time Limit: 50 Sec  Memory Limit: 128 MB
Submit: 1071  Solved: 428

Description

你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作:

命令

参数限制

内容

1 x y A

1<=x,y<=N,A是正整数

将格子x,y里的数字加上A

2 x1 y1 x2 y2

1<=x1<= x2<=N

1<=y1<= y2<=N

输出x1 y1 x2 y2这个矩形内的数字和

3

终止程序

Input

输入文件第一行一个正整数N。
接下来每行一个操作。
 

Output

对于每个2操作,输出一个对应的答案。
 

Sample Input

4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

1<=N<=500000,操作数不超过200000个,内存限制20M。
对于100%的数据,操作1中的A不超过2000。

Source

CDQ分治

第4遍回顾之前抄的代码的时候,突然顿悟。

个人理解,这种分治方法类似于做矩形面积并时候用到的扫描线法。将每个区间修改操作拆成插入/删除,和每个询问操作一起按横坐标x升序排序。

用一个一维数组记录“当前横坐标”对应的y轴情况,从左往右扫描所有操作,并用差分的方式完成修改(在时间维度上差分),记录答案。

↑该一维数组可以用树状数组优化,扫描操作可以用分治方法优化(每层分治时处理前半部分操作对后半部分查询的影响)。

  ↑组合起来就成了CDQ分治。

________

PS1: 这时我想起,两三个个月前RLQ说他研究出一种用树状数组乱搞二维大数据的做法,当时没怎么听懂,也没太在意……卧槽,原来是CDQ分治?

    CDQ分治要是晚出现两年,就变成RLQ分治了……%%%%%

PS2:   之前抄的LCT也已经回顾了10+遍了,是不是也快要顿悟了呢……

________

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
struct opt{
int flag;
int x,y,w;
int t;
int id;
}a[mxn*],b[mxn*];
int cnt=;
int cmp(opt q,opt e){
if(q.x==e.x){
if(q.y==e.y)return q.flag<e.flag;
return q.y<e.y;
}
return q.x<e.x;
}
int ans[mxn];
int t[mxn*];
void add(int x,int v){while(x<=n){t[x]+=v;x+=x&-x;}return;}
int sum(int x){
int res=;
while(x){res+=t[x];x-=x&-x;}
return res;
}
void solve(int l,int r){
if(l>=r)return;
int i,j,mid=(l+r)>>;
int l1=l,l2=mid+;
for(i=l;i<=r;i++){
if(a[i].flag== && a[i].t<=mid) add(a[i].y,a[i].w);
else if(a[i].flag== && a[i].t>mid) ans[a[i].id]+=sum(a[i].y)*a[i].w;
}
for(i=l;i<=r;i++)
if(a[i].flag== && a[i].t<=mid) add(a[i].y,-a[i].w);
for(i=l;i<=r;i++)
if(a[i].t<=mid)b[l1++]=a[i];
else b[l2++]=a[i];
for(i=l;i<=r;i++)a[i]=b[i];
solve(l,mid);solve(mid+,r);
return;
}
int main(){
n=read();
int i,j,x,y,c,v;
int id=;
while(){
c=read();
if(c==)break;
if(c==){//修改
x=read();y=read();v=read();
a[++cnt].flag=;a[cnt].x=x;a[cnt].y=y;a[cnt].w=v;
a[cnt].t=cnt;
}
else{//查询
x=read();y=read();c=read();v=read();
a[++cnt].flag=;a[cnt].x=x-;a[cnt].y=y-;
a[cnt].w=;a[cnt].t=cnt;a[cnt].id=++id;
a[++cnt].flag=;a[cnt].x=x-;a[cnt].y=v;
a[cnt].w=-;a[cnt].t=cnt;a[cnt].id=id;
a[++cnt].flag=;a[cnt].x=c;a[cnt].y=y-;
a[cnt].w=-;a[cnt].t=cnt;a[cnt].id=id;
a[++cnt].flag=;a[cnt].x=c;a[cnt].y=v;
a[cnt].w=;a[cnt].t=cnt;a[cnt].id=id;
}
}
sort(a+,a+cnt+,cmp);
solve(,cnt);
for(i=;i<=id;i++){
printf("%d\n",ans[i]);
}
return ;
}

Bzoj2683 简单题 [CDQ分治]的更多相关文章

  1. bzoj2683简单题 cdq分治

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 1803  Solved: 731[Submit][Status][Discuss] ...

  2. BZOJ2683: 简单题(cdq分治 树状数组)

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2142  Solved: 874[Submit][Status][Discuss] Descripti ...

  3. 【BZOJ1176】[Balkan2007]Mokia/【BZOJ2683】简单题 cdq分治

    [BZOJ1176][Balkan2007]Mokia Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=1600 ...

  4. 【bzoj1176】[Balkan2007]Mokia/【bzoj2683】简单题 CDQ分治+树状数组

    bzoj1176 题目描述 维护一个W*W的矩阵,初始值均为S(题目描述有误,这里的S没有任何作用!).每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数 ...

  5. 【BZOJ-1176&2683】Mokia&简单题 CDQ分治

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  6. bzoj 1176: [Balkan2007]Mokia&&2683: 简单题 -- cdq分治

    2683: 简单题 Time Limit: 50 Sec  Memory Limit: 128 MB Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要 ...

  7. BZOJ 2683: 简单题 [CDQ分治]

    同上题 那你为什么又发一个? 因为我用另一种写法又写了一遍... 不用排序,$CDQ$分治的时候归并排序 快了1000ms... #include <iostream> #include ...

  8. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  9. BZOJ 2683: 简单题(CDQ 分治)

    题面 Time Limit: 50 Sec  Memory Limit: 128 MB Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: ...

随机推荐

  1. 1002. A+B for Polynomials

    1002. A+B for Polynomials (25) This time, you are supposed to find A+B where A and B are two polynom ...

  2. DWZ中Tree树形菜单的treeCheck如何获取返回值解决方案

    最近在对DWZ和asp.net MVC3进行整合,其中遇到了很多问题,总算一一解决了,今天就说说题目所示的问题解决方案. 想做一个基于角色的权限管理,要对每一个Action进行权限控制.就想用DWZ的 ...

  3. c++ 指针(二)

    函数指针 可以使用算法的地址传递给方法,传递之前要先完成以下工作 1.获取函数的地址 2.声明一个函数指针 3.使用函数指针来调用函数 1.获取函数的地址,只要使用函数名就可以 Fun2(Fun1); ...

  4. Ajax与json在前后端中的细节解惑

    ajax请求JSON Thinkphp中对是否为Ajax的判断,在TP3.2开发手册中有这么一段:“需要注意的是,如果使用的是ThinkAjax或者自己写的Ajax类库的话,需要在表单里面添加一个隐藏 ...

  5. JQuery fullCalendar 时间差 排序获取距当前最近的时间。

    let time = (wo: WoDto) => wo.ScheduleTime || wo.ScheduleStartTime; let wo = technician.wos .filte ...

  6. [C语言]一个很实用的服务端和客户端进行UDP通信的实例

    前段时间发了个TCP通信的例子,现在再来一个UDP通信的例子.这些可以作为样本程序,用到开发中.“裸写”socket老是记不住步骤,经常被鄙视…… 下面的例子很简单,写一个UDP的server用于收包 ...

  7. Android开发自学笔记(Android Studio1.3.1)—2.开始第一个Android应用

    一.前言      使用Android Studio开发Android应用是一件非常简单的事情,因为它会帮你自动完成很多工作.本篇我们主要完成一个单击按钮在文本框显示当前时间的简单应用,借此来演示一下 ...

  8. WEB API 中HTTP的get、post、put,delete 请求方式

    一.WEB API 中HTTP 请求方式的四个主要方法 (GET, PUT, POST, DELETE), 按照下列方式映射为 CURD 操作: 1.POST 用于新建资源,服务端在指定的URI 上创 ...

  9. [BZOJ1116][Poi2008]LCO(并查集)

    题目:http://hzwer.com/3010.html 分析:注意这里无向边是对入度没有贡献的. 那么对于一个n个点的连通块而言,如果它是一颗树(n-1条边),那么把所有边全部从某个根开始向下指, ...

  10. Map集合的应用及其遍历方式

    ---> HashMap :底层基于哈希表      存储原理也使用哈希表来存放的:            往HashMap添加了元素 ,首先会调用键的hashCode方法 获得一个哈希值,然后 ...