poj1811 数论
题意:判断一个数是否是质数+分解质因数
sol:模板题
分解质因数用xudyh模板,注意factor返回的是无序的,factorG返回是从小到大的顺序(包括了1)
判断质数用kuangbin随机化模板
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <bitset>
#include <list>
#include <cassert>
#include <complex>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define all(x) (x).begin(),(x).end()
//#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define TWO(x) (1<<(x))
#define TWOL(x) (1ll<<(x))
#define clr(a) memset(a,0,sizeof(a))
#define POSIN(x,y) (0<=(x)&&(x)<n&&0<=(y)&&(y)<m)
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long ll;
typedef long double LD;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
typedef vector<ll> VL;
typedef vector<PII> VPII;
typedef complex<double> CD;
const int inf=0x20202020;
const ll mod=;
const double eps=1e-; ll powmod(ll a,ll b) //return (a*b)%mod
{ll res=;a%=mod;for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll powmod(ll a,ll b,ll mod) //return (a*b)%mod
{ll res=;a%=mod;for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) //return gcd(a,b)
{ return b?gcd(b,a%b):a;}
// head namespace Factor {
const int N=;
ll C,fac[],n,mut,a[];
int T,cnt,i,l,prime[N],p[N],psize,_cnt;
ll _e[],_pr[];
vector<ll> d; inline ll mul(ll a,ll b,ll p) { //return (a*b)%p
if (p<=) return a*b%p;
else if (p<=1000000000000ll) return (((a*(b>>)%p)<<)+(a*(b&((<<)-))))%p;
else {
ll d=(ll)floor(a*(long double)b/p+0.5);
ll ret=(a*b-d*p)%p;
if (ret<) ret+=p;
return ret;
}
} void prime_table(){ //prime[1..tot]: prime[i]=ith prime
int i,j,tot,t1;
for (i=;i<=psize;i++) p[i]=i;
for (i=,tot=;i<=psize;i++){
if (p[i]==i) prime[++tot]=i;
for (j=;j<=tot && (t1=prime[j]*i)<=psize;j++){
p[t1]=prime[j];
if (i%prime[j]==) break;
}
}
} void init(int ps) { //initial
psize=ps;
prime_table();
} ll powl(ll a,ll n,ll p) { //return (a^n)%p
ll ans=;
for (;n;n>>=) {
if (n&) ans=mul(ans,a,p);
a=mul(a,a,p);
}
return ans;
} bool witness(ll a,ll n) {
int t=;
ll u=n-;
for (;~u&;u>>=) t++;
ll x=powl(a,u,n),_x=;
for (;t;t--) {
_x=mul(x,x,n);
if (_x== && x!= && x!=n-) return ;
x=_x;
}
return _x!=;
} bool miller(ll n) {
if (n<) return ;
if (n<=psize) return p[n]==n;
if (~n&) return ;
for (int j=;j<=;j++) if (witness(rand()%(n-)+,n)) return ;
return ;
} ll gcd(ll a,ll b) {
ll ret=;
while (a!=) {
if ((~a&) && (~b&)) ret<<=,a>>=,b>>=;
else if (~a&) a>>=; else if (~b&) b>>=;
else {
if (a<b) swap(a,b);
a-=b;
}
}
return ret*b;
} ll rho(ll n) {
for (;;) {
ll X=rand()%n,Y,Z,T=,*lY=a,*lX=lY;
int tmp=;
C=rand()%+;
X=mul(X,X,n)+C;*(lY++)=X;lX++;
Y=mul(X,X,n)+C;*(lY++)=Y;
for(;X!=Y;) {
ll t=X-Y+n;
Z=mul(T,t,n);
if(Z==) return gcd(T,n);
tmp--;
if (tmp==) {
tmp=;
Z=gcd(Z,n);
if (Z!= && Z!=n) return Z;
}
T=Z;
Y=*(lY++)=mul(Y,Y,n)+C;
Y=*(lY++)=mul(Y,Y,n)+C;
X=*(lX++);
}
}
} void _factor(ll n) {
for (int i=;i<cnt;i++) {
if (n%fac[i]==) n/=fac[i],fac[cnt++]=fac[i];}
if (n<=psize) {
for (;n!=;n/=p[n]) fac[cnt++]=p[n];
return;
}
if (miller(n)) fac[cnt++]=n;
else {
ll x=rho(n);
_factor(x);_factor(n/x);
}
} void dfs(ll x,int dep) {
if (dep==_cnt) d.push_back(x);
else {
dfs(x,dep+);
for (int i=;i<=_e[dep];i++) dfs(x*=_pr[dep],dep+);
}
} void norm() {
sort(fac,fac+cnt);
_cnt=;
rep(i,,cnt) if (i==||fac[i]!=fac[i-]) _pr[_cnt]=fac[i],_e[_cnt++]=;
else _e[_cnt-]++;
} vector<ll> getd() {
d.clear();
dfs(,);
return d;
} vector<ll> factor(ll n) { //return all factors of n cnt:the number of factors
cnt=;
_factor(n);
norm();
return getd();
} vector<PLL> factorG(ll n) {
cnt=;
_factor(n);
norm();
vector<PLL> d;
rep(i,,_cnt) d.push_back(make_pair(_pr[i],_e[i]));
return d;
} bool is_primitive(ll a,ll p) {
assert(miller(p));
vector<PLL> D=factorG(p-);
rep(i,,SZ(D)) if (powmod(a,(p-)/D[i].first,p)==) return ;
return ;
}
} /* *************************************************
* Miller_Rabin算法进行素数测试
*速度快,可以判断一个 < 2^63的数是不是素数
*
**************************************************/
const int S = ; //随机算法判定次数,一般8~10就够了
//计算ret = (a*b)%c
long long mult_mod(long long a,long long b,long long c)
{
a %= c;
b %= c;
long long ret = ;
long long tmp = a;
while(b)
{
if(b & )
{
ret += tmp;
if(ret > c)ret -= c;//直接取模慢很多
}
tmp <<= ;
if(tmp > c)tmp -= c;
b >>= ;
}
return ret;
}
//计算 ret = (a^n)%mod
long long pow_mod(long long a,long long n,long long mod)
{
long long ret = ;
long long temp = a%mod;
while(n)
{
if(n & )ret = mult_mod(ret,temp,mod);
temp = mult_mod(temp,temp,mod);
n >>= ;
}
return ret;
}
//通过 a^(n-1)=1(mod n)来判断n是不是素数
// n-1 = x*2^t中间使用二次判断
//是合数返回true,不一定是合数返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret = pow_mod(a,x,n);
long long last = ret;
for(int i = ; i <= t; i++)
{
ret = mult_mod(ret,ret,n);
if(ret == && last != && last != n-)return true;//合数
last = ret;
}
if(ret != )return true;
else return false;
}
//**************************************************
// Miller_Rabin算法
//是素数返回true,(可能是伪素数)
//不是素数返回false
//**************************************************
bool Miller_Rabin(long long n)
{
if( n < )return false;
if( n == )return true;
if( (n&) == )return false;//偶数
long long x = n - ;
long long t = ;
while( (x&)== )
{
x >>= ;
t++;
}
rand();/* *************** */
for(int i = ; i < S; i++)
{
long long a = rand()%(n-) + ;
if( check(a,n,x,t) )
return false;
}
return true;
} ll x,y,k,n;
int _;
int main() {
Factor::init();
cin>>_;
while (_--)
{
cin>>n;
bool ok=Miller_Rabin(n);
if (n==)
{
cout<<<<endl;
continue;
}
else if (n==)
{
cout<<"Prime"<<endl;
continue;
}
if (ok) cout<<"Prime"<<endl;
else
{
vector <PLL> p=Factor::factorG(n);
//for (vector<ll>::iterator i=p.begin();i!=p.end();i++)
// cout<<*i<<" ";
vector<PLL>::iterator i=p.begin();
//printf("%d\n",*i);
cout<<i->first<<endl;
}
}
}
明天就要去打铁了orz
poj1811 数论的更多相关文章
- 数论知识总结——史诗大作(这是一个flag)
1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))a ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- hdu5072 Coprime (2014鞍山区域赛C题)(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
随机推荐
- Alwayson--SYS.dm_hadr_instance_node_map 返回0行
下面是MSDN关于SYS.dm_hadr_instance_node_map 的解释,我就不在翻译了 For every instance of SQL Server that hosts an av ...
- Windows 8 开发系列汇总
Windows 8 应用开发 Windows 8 应用开发 - 异步调用 Windows 8 应用开发 - 本地数据存储 Windows 8 应用开发 - 挂起与恢复 Windows 8 应用开发 - ...
- C语言 memset函数盲点
#include <stdio.h> #include <stdlib.h> #include <string.h> struct packet { int len ...
- QT 文件操作
QT提供了QFile类用于文件读写 QFile可以读写文本文件,也可以读写二进制文件 #include "widget.h" #include <QGridLayout> ...
- 打印机设置(PrintDialog)、页面设置(PageSetupDialog) 及 RDLC报表如何选择指定打印机
如果一台电脑同时连接多个打印机,而且每个打印机使用的纸张大小各不相同(比如:票据打印钱用的小票专用张,办公打印机用的是A4标准纸),在处理打印类的需求时,如果不用代码干预,用户必须每次打印时,都必须在 ...
- lecture2-NN结构的主要类型的概述和感知机
Hinton课程第二课 一.NN结构的主要类型的概述 这里的结构就是连接在一起的神经元.目前来说,在实际应用中最常见的NN就是前向NN,他是将数据传递给输入单元,通过隐藏层最后到输出层的单元:一个更有 ...
- Asp.net Mvc中利用ValidationAttribute实现xss过滤
在网站开发中,需要注意的一个问题就是防范XSS攻击,Asp.net mvc中已经自动为我们提供了这个功能.用户提交数据时时,在生成Action参数的过程中asp.net会对用户提交的数据进行验证,一旦 ...
- HTML5+JS 《五子飞》游戏实现(七)游戏试玩
前面第一至第六章我们已经把<五子飞>游戏的基本工作都已经讲得差不多了,这一章主要是把所有的代码分享给大家,然后小伙伴们也可以玩一玩. 至于人机对战的我们放到后面讲进行分析. 试玩地址:ht ...
- [转]Windows 8.1删除这台电脑中视频/文档/下载等六个文件夹的方法
Windows 8.1 已将“计算机”正式更名为“这台电脑”,当我们双击打开“这台电脑”后,也会很明显得发现另外一些变化:Windows 8.1 默认将视频.图片.文档.下载.音乐.桌面等常用文件夹 ...
- ASP.NET Web API 实现客户端Basic(基本)认证 之简单实现
优点是逻辑简单明了.设置简单. 缺点显而易见,即使是BASE64后也是可见的明文,很容易被破解.非法利用,使用HTTPS是一个解决方案. 还有就是HTTP是无状态的,同一客户端每次都需要验证. 实现: ...