Apache Hadoop NextGen MapReduce (YARN)

MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0 (MRv2) or YARN.

The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a DAG of jobs.

The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system.

The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.

The ResourceManager has two main components: Scheduler and ApplicationsManager.

The Scheduler is responsible for allocating resources to the various running applications subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that it performs no monitoring or tracking of status for the application. Also, it offers no guarantees about restarting failed tasks either due to application failure or hardware failures. The Scheduler performs its scheduling function based the resource requirements of the applications; it does so based on the abstract notion of a resource Container which incorporates elements such as memory, cpu, disk, network etc. In the first version, only memory is supported.

The Scheduler has a pluggable policy plug-in, which is responsible for partitioning the cluster resources among the various queues, applications etc. The current Map-Reduce schedulers such as the CapacityScheduler and the FairScheduler would be some examples of the plug-in.

The CapacityScheduler supports hierarchical queues to allow for more predictable sharing of cluster resources

The ApplicationsManager is responsible for accepting job-submissions, negotiating the first container for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure.

The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.

The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress.

MRV2 maintains API compatibility with previous stable release (hadoop-1.x). This means that all Map-Reduce jobs should still run unchanged on top of MRv2 with just a recompile.

from:http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

YARN :Architecture的更多相关文章

  1. Storm on Yarn :原理分析+平台搭建

    Storm on YARN: Storm on YARN被视为大规模Web应用与传统企业应用之间的桥梁.它将Storm事件处理平台与YARN(Yet Another Resource Negotiat ...

  2. [BigData - Hadoop - YARN] YARN:下一代 Hadoop 计算平台

    Apache Hadoop 是最流行的大数据处理工具之一.它多年来被许多公司成功部署在生产中.尽管 Hadoop 被视为可靠的.可扩展的.富有成本效益的解决方案,但大型开发人员社区仍在不断改进它.最终 ...

  3. Apache Hadoop YARN: 背景及概述

    从2012年8月开始Apache Hadoop YARN(YARN = Yet Another Resource Negotiator)成了Apache Hadoop的一项子工程.自此Apache H ...

  4. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  5. Spark On Yarn:提交Spark应用程序到Yarn

    转载自:http://lxw1234.com/archives/2015/07/416.htm 关键字:Spark On Yarn.Spark Yarn Cluster.Spark Yarn Clie ...

  6. 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配

    spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...

  7. AeroSpike踩坑手记1:Architecture of a Real Time Operational DBMS论文导读

    又开了一个新的坑,笔者工作之后维护着一个 NoSQL 数据库.而笔者维护的数据库正是基于社区版本的 Aerospike打造而来.所以这个踩坑系列的文章属于工作总结型的内容,会将使用开发 Aerospi ...

  8. 第1节 yarn:15、关于yarn中常用的参数设置

    第一个参数:container分配最小内存 yarn.scheduler.minimum-allocation-mb     1024   给应用程序container分配的最小内存 第二个参数:co ...

  9. 第1节 yarn:14、yarn集群当中的三种调度器

    yarn当中的调度器介绍: 第一种调度器:FIFO Scheduler  (队列调度器) 把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源 ...

随机推荐

  1. gitlab配置邮件通知功能操作记录

    之前已经介绍了gitlab的部署http://www.cnblogs.com/kevingrace/p/5651402.html但是没有配置邮箱通知功能,今天这里介绍下gitlab安装后的邮箱配置操作 ...

  2. Ubuntu的Mysql指南

    安装MySQL sudo apt-get install mysql-server 这个应该很简单了,而且我觉得大家在安装方面也没什么太大问题,所以也就不多说了,下面我们来讲讲配置. 配置MySQL ...

  3. IO操作总结

    1,读取文件将文件转换为二进制流 InputStream in = new FileInputStream("C:/test.png"); byte[] photo = new b ...

  4. AngularJS中的按需加载ocLazyLoad

    欢迎大家讨论与指导 : ) 初学者,有不足的地方希望各位指出 一.前言 ocLoayLoad是AngularJS的模块按需加载器.一般在小型项目里,首次加载页面就下载好所有的资源没有什么大问题.但是当 ...

  5. maven spring profile 协同

    请在网上查相关的使用情景,这里直接上要点.另外,可能不只一种方法,但这里只有一种. 1.POM.XML片段,使web.xml文件中有关活跃spring profile的内容可以被maven自动替换 & ...

  6. Spring Security授权 AccessDecisionManager

    Spring Security授权 AccessDecisionManager 博客分类: Security Spring   在前面那篇博客有一段配置: <http auto-config=& ...

  7. Incorrect string value异常解决

    mysql数据库的一个问题 1366-Incorrect string value:'\xE5\x8D\xA1\xE5......' for column 'filename' at row 1 问题 ...

  8. 让 HTML5 来为你定位

    Geolocation HTML5 的 geolocation 是一个令人兴奋的 API,通过这套 API,Javascript 代码就能够访问到用户的当前位置.当然,访问之前必须得到用户的明确认可, ...

  9. CSS实现透明边框

    border: 8px solid rgba(255,255,255,0.2);

  10. <实训|第七天>横扫Linux磁盘分区、软件安装障碍附制作软件仓库

    期待已久的linux运维.oracle"培训班"终于开班了,我从已经开始长期四个半月的linux运维.oracle培训,每天白天我会好好学习,晚上回来我会努力更新教程,包括今天学到 ...