[问题2014S05] 复旦高等代数II(13级)每周一题(第五教学周)
[问题2014S05] 设 \(A,B\) 分别是 \(4\times 3\) 和 \(3\times 4\) 实矩阵,
\[ BA=\begin{pmatrix}
-9 & -20 & -35 \\
2 & 5 & 7 \\
2 & 4 & 8
\end{pmatrix},\,AB=\begin{pmatrix}
9a-14 & 0 & 9a-15 & 18a-32 \\
6a+2b-9 & 1 & 6a+3b-9 & 12a+4b-19 \\
-2a+2 & 0 & -2a+3 & -4a+4 \\
-3a+6 & 0 & -3a+6 & -6a+14
\end{pmatrix},\] 试求参数 \(a,b\) 的值.
[问题2014S05] 复旦高等代数II(13级)每周一题(第五教学周)的更多相关文章
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
- [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)
[问题2014S06] 试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间, \(\varphi\) 为 \(V\) 上的线 ...
随机推荐
- Android课程---用进度条改变图片透明度
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- php SPL学习
数据结构 SplDoublyLinkedList - 该SplDoublyLinkedList类提供了一个双向链表的主要功能 SplStack - 该SplStack类提供了一种使用双向链表实现栈的主 ...
- HTML中禁用表单控件的两种方法readonly与disabled
时候我们会希望表单上的控件是不可修改的,比如在修改密码的网页中,显示用户名的文本框就应该是不可修改状态的,下面与大家分享下禁用表中控件的两种方法 在网页的制作过程中,我们会经常使用到表单.但是有时候我 ...
- 使用 Sublime Text3 编辑 Markdown
安装插件 可以通过安装 Markdown 的插件来使 Sublime Text3 变成一款 Markdown 编辑器 1.Markdown Preview 插件 输入Shift + Ctrl + P, ...
- ThinkPHP 3.2.3 简单后台模块开发(一)常用配置
一.项目分组 下载解压 ThinkPHP 3.2.3,在默认的应用 Application(./Application) 中,包含一个默认的模块 Home(./Application/Home). 需 ...
- ExtJS笔记 Ext.Loader
Ext.Loader is the heart of the new dynamic dependency loading capability in Ext JS 4+. It is most co ...
- nginx编译安装
Nginx编译安装 1.nginx官网:http://wiki.nginx.org/Install下载:http://nginx.org/en/download.html 2.编译安装# wget h ...
- P1941 飞扬的小鸟
此题很容易写出方程,由以前的知识可以迁移得,本题可以用完全背包的方法进行优化,使用滚动数组即可得到答案. //莫名奇妙60分.不知道什么细节出了错. #include <bits/stdc++. ...
- Java 笔录
ASCII的字符编码 变量的作用域 成员变量:在类中生命都,它作用域整个类. 局部变量:在一个方法的内部或方法的一个代码的内部声明.如果在方法内部声明,它作用域是整个方法:如果在一个方法的某个代码块的 ...
- php基础篇-二维数组排序 array_multisort
原文:php基础篇-二维数组排序 array_multisort 对2维数组或者多维数组排序是常见的问题,在php中我们有个专门的多维数组排序函数,下面简单介绍下: array_multisort(a ...