线段树 + 离散化


Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

Every candidate can place exactly one poster on the wall.

All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).

The wall is divided into segments and the width of each segment is one byte.

Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1

5

1 4

2 6

8 10

3 4

7 10

Sample Output

4


题目大意

在一面墙上,要贴上 n 张海报,给出海报的 l 和 r ,后贴上的海报会覆盖掉之前贴上的海报。问最后能看见几张海报。

很明显这是一道线段树的题。维护墙上每个点是哪张海报,区间修改,加懒惰标记。最后单点查询每个点是哪张海报。因为一张海报被分成的不同部分被看作是一张海报,所以用一个vis数组来标记是否出现过,如果没有则ans加一。

l 和 r 的区间范围是 \(1e7\) 如果直接开线段树可能会爆空间,所以需要离散化。

代码

#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
#define ls u<<1, l, mid
#define rs u<<1|1,mid+1,r const int maxn = 1e4 + 5;
int n,m;
int vis[maxn];
int nod[maxn << 4],add[maxn << 4]; struct qq {
int l,r;
}q[maxn]; vector <int> v;
inline int getid(int x) {return lower_bound(v.begin(),v.end(),x) - v.begin() + 1;} inline void pushdown(int u) {
nod[u<<1] = nod[u<<1|1] = add[u];
add[u<<1] = add[u<<1|1] = add[u];
add[u] = 0;
} void update(int u,int l,int r,int x,int y,int ad) {
if(l == x && r == y) {
nod[u] = ad;add[u] = ad;return;
}
if(add[u])pushdown(u);
int mid = (l + r) >> 1;
if(y <= mid) update(ls,x,y,ad);
else if(x > mid) update(rs,x,y,ad);
else {
update(ls,x,mid,ad);update(rs,mid+1,y,ad);
}
} int query(int u,int l,int r,int x) {
if(l == r)return nod[u];
if(add[u])pushdown(u);
int mid = (l + r) >> 1;
if(x <= mid) return query(ls,x);
return query(rs,x);
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
int t;cin >> t;
while(t--) {
cin >> n;
for(int i = 1;i <= n;i++) {
cin >> q[i].l >> q[i].r;
v.push_back(q[i].l), v.push_back(q[i].r);
}
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
m = v.end() - v.begin();
memset(nod,0,sizeof(nod));
memset(add,0,sizeof(add));
for(int i = 1;i <= n;i++) {
update(1,1,m,getid(q[i].l),getid(q[i].r),i);
}
int ans = 0;
memset(vis,0,sizeof(vis));
for(int i = 1;i <= m;i++) {
int x = query(1,1,m,i);
if(x && !vis[x]) ans++,vis[x] = 1;
}
cout << ans << endl;
} return 0;
}

[poj2528] Mayor's posters (线段树+离散化)的更多相关文章

  1. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  4. Mayor's posters (线段树+离散化)

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  5. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  6. POJ2528 Mayor's posters —— 线段树染色 + 离散化

    题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...

  7. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  8. poj2528 Mayor's posters(线段树区间修改+特殊离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  9. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

随机推荐

  1. 将Excel数据导入mysql数据库的几种方法

    将Excel数据导入mysql数据库的几种方法 “我的面试感悟”有奖征文大赛结果揭晓! 前几天需要将Excel表格中的数据导入到mysql数据库中,在网上查了半天,研究了半天,总结出以下几种方法,下面 ...

  2. php使用 memcache 来存储 session 方法总结

    设置session用memcache来存储 方法I: 在 php.ini 中全局设置 session.save_handler = memcache session.save_path = " ...

  3. [daily][device] linux添加打印机

    只用过HP的打印机,用过两个,分别是:HP_p2055dn, 和 HP_LaserJet_Professional_M1216nfh  别的不知道.以下内容仅试用于HP打印机. 第一:装HP,打印机工 ...

  4. UIView常见属性设置汇总

    1.圆角设置 viewT.layer.cornerRadius = 10;//设置那个圆角的有多圆 viewT.layer.borderWidth = 10;//设置边框的宽度,当然可以不要 view ...

  5. jqxGrid 绑定格式化

    var cellsrenderer = function(row, columnfield, value, defaulthtml, columnproperties) { ) || (row == ...

  6. Android studio -VSN 使用笔记

    1.Android studio 安装 中文组官网:http://www.android-studio.org/ 常见问题参考: 分支冲突合并 http://blog.csdn.net/tearsmo ...

  7. Aggregate

    对序列应用累加器函数. /// <summary> /// 计算校验和,SUM /// </summary> public byte CalculateCheckSum(byt ...

  8. 存储过程:当基站ID大于1000的时候,把ID通过存储过程插入表,然后处理

    不推荐这么弄,没办法,项目逼到这了,以后尽量避免这样的需求发生! CREATE OR REPLACE PROCEDURE insert_tempStation_proc(v_instr in clob ...

  9. mongodb的一些基本操作

    1.列出所有数据库 >show dbs   2.使用数据库 >use memo   3.列出当前数据库的collections >show collections   4.显示当前正 ...

  10. Scala 环境搭建

    下载安装包 1,)下载java jdk,推荐jdk1.8; 2,)下载scala安装包:http://www.scala-lang.org/; 3,)下载IDE:ide可以选择两种: 3.1,)Sca ...