线段树 + 离散化


Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

Every candidate can place exactly one poster on the wall.

All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).

The wall is divided into segments and the width of each segment is one byte.

Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1

5

1 4

2 6

8 10

3 4

7 10

Sample Output

4


题目大意

在一面墙上,要贴上 n 张海报,给出海报的 l 和 r ,后贴上的海报会覆盖掉之前贴上的海报。问最后能看见几张海报。

很明显这是一道线段树的题。维护墙上每个点是哪张海报,区间修改,加懒惰标记。最后单点查询每个点是哪张海报。因为一张海报被分成的不同部分被看作是一张海报,所以用一个vis数组来标记是否出现过,如果没有则ans加一。

l 和 r 的区间范围是 \(1e7\) 如果直接开线段树可能会爆空间,所以需要离散化。

代码

#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
#define ls u<<1, l, mid
#define rs u<<1|1,mid+1,r const int maxn = 1e4 + 5;
int n,m;
int vis[maxn];
int nod[maxn << 4],add[maxn << 4]; struct qq {
int l,r;
}q[maxn]; vector <int> v;
inline int getid(int x) {return lower_bound(v.begin(),v.end(),x) - v.begin() + 1;} inline void pushdown(int u) {
nod[u<<1] = nod[u<<1|1] = add[u];
add[u<<1] = add[u<<1|1] = add[u];
add[u] = 0;
} void update(int u,int l,int r,int x,int y,int ad) {
if(l == x && r == y) {
nod[u] = ad;add[u] = ad;return;
}
if(add[u])pushdown(u);
int mid = (l + r) >> 1;
if(y <= mid) update(ls,x,y,ad);
else if(x > mid) update(rs,x,y,ad);
else {
update(ls,x,mid,ad);update(rs,mid+1,y,ad);
}
} int query(int u,int l,int r,int x) {
if(l == r)return nod[u];
if(add[u])pushdown(u);
int mid = (l + r) >> 1;
if(x <= mid) return query(ls,x);
return query(rs,x);
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
int t;cin >> t;
while(t--) {
cin >> n;
for(int i = 1;i <= n;i++) {
cin >> q[i].l >> q[i].r;
v.push_back(q[i].l), v.push_back(q[i].r);
}
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
m = v.end() - v.begin();
memset(nod,0,sizeof(nod));
memset(add,0,sizeof(add));
for(int i = 1;i <= n;i++) {
update(1,1,m,getid(q[i].l),getid(q[i].r),i);
}
int ans = 0;
memset(vis,0,sizeof(vis));
for(int i = 1;i <= m;i++) {
int x = query(1,1,m,i);
if(x && !vis[x]) ans++,vis[x] = 1;
}
cout << ans << endl;
} return 0;
}

[poj2528] Mayor's posters (线段树+离散化)的更多相关文章

  1. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  4. Mayor's posters (线段树+离散化)

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  5. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  6. POJ2528 Mayor's posters —— 线段树染色 + 离散化

    题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...

  7. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  8. poj2528 Mayor's posters(线段树区间修改+特殊离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  9. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

随机推荐

  1. JDBC链接oracle已经mysql的测试

    1.链接oracle package cn.itcast.mybatis.dao; import java.sql.Connection;import java.sql.DriverManager;i ...

  2. sphinx网址

    http://www.phperz.com/article/14/0615/95.htmlhttp://www.kuqin.com/shuoit/20141101/342963.htmlhttp:// ...

  3. 20145224&20145238《信息安全系统设计基础》实验一 开发环境的熟悉

    20145224陈颢文20145238荆玉茗 <信息安全系统设计基础>第一次实验报告 课程:信息安全系统设计基础 班级: 1452 姓名:荆玉茗 陈颢文 学号:20145238 20145 ...

  4. Indexing and Hashing

    DATABASE SYSTEM CONCEPTS, SIXTH EDITION11.1 Basic ConceptsAn index for a file in a database system wo ...

  5. 交流从选择coding.net开始

    之前提到我们需要coding.net(一个可以帮助你在线存放管理代码的地方,便于项目合作)来进行学习交流,它可以帮我们记录我们入门的点点滴滴,现在就简单介绍一下coding.net的注册及使用. 1. ...

  6. Java微信公众号开发

    微信公众平台是腾讯为了让用户申请和管理微信公众账号而推出的一个web平台.微信公众账号的种类可以分为3种,并且一旦选定不可更改.按照功能的限制从小到大依次为:订阅号.服务号.企业号.个人只能注册订阅号 ...

  7. NSString(或者说是UILabel)加入 “行间距” 之后的 “高度”计算

    一.首先,写一个工具类(NSString的分类,增加两个功能,计算高度宽度) #import "NSString+Extension.h" @implementation NSSt ...

  8. linux中ONBOOT=yes的含义

    在/etc/sysconfig/network-scripts/ifcfg-eth0(确认ONBOOT=yes),其中eth0是设备名 ONBOOT是指明在系统启动时是否激活网卡,只有在激活状态的网卡 ...

  9. eNSP的使用

    1- 进入华为路由器界面配置ipThe device is running!####################################Nov  1 2016 23:39:24-08:00 ...

  10. Oracle中的rownum和rowid

    http://blog.csdn.net/mitedu/article/details/3584399  rownum http://blog.csdn.net/mitedu/article/deta ...