Uva 11478 Halum操作
题目链接:http://vjudge.net/contest/143318#problem/B
题意:给定一个有向图,每条边都有一个权值。每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后让所有边的权值的最小值大于零且尽量大。
分析:
最小值尽量大,二分,最大不能超过最大边,要是最大边的话,其他边满足不了非负;
题意说的各种操作,他互不影响;也就变成了操作各边。
对于各点的操作来说:
令sum(u) 是作用于 u 上的所有 d 之和;
a—> b边的权值就是: w(a,b) +sum(a) - sum(b)>=x(答案);
对上式 变形: sum(b) - sum(a) <= w(a,b) -x;
sum(b) - sum(a) 就是对这条边的操作。
这就是一个差分约束系统。
枚举这个sum(b) - sum(a) ,要是有负环,就是查分系统无解。
没有负环,说明,这个最小值还可以大一点。
#include <bits/stdc++.h>
using namespace std; const int maxn = + ; struct Edge
{
int from,to;
double dist;
}; struct BellmanFord
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
double d[maxn];
int p[maxn];
int cnt[maxn]; void init(int n)
{
this->n = n;
for(int i = ; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, double dist)
{
edges.push_back((Edge)
{
from, to, dist
});
m = edges.size();
G[from].push_back(m-);
} bool negativeCycle()
{
queue<int> Q;
memset(inq, , sizeof(inq));
memset(cnt, , sizeof(cnt));
for(int i = ; i < n; i++)
{
d[i] = ;
inq[] = true;
Q.push(i);
} while(!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = false;
for(int i = ; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to] = true;
if(++cnt[e.to] > n) return true;
}
}
}
}
return false;
}
}; BellmanFord solver; bool test(int x)
{
for(int i=; i<solver.m; i++)
{
solver.edges[i].dist -=x;
}
bool ret = solver.negativeCycle();
for(int i=; i<solver.m; i++)
{
solver.edges[i].dist +=x;
}
return !ret;
} int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{ solver.init(n);
int ub = ; for(int i=; i<m; i++)
{
int u,v,dist;
scanf("%d%d%d",&u,&v,&dist);
ub = max(ub,dist);
u--;
v--;
solver.AddEdge(u,v,dist);
} if(test(ub+)) puts("Infinite");
else if(!test()) puts("No Solution");
else
{
int L = , R = ub, ans = ;
while(L <= R)
{
int M = L + (R-L)/;
if(test(M)) //没有负环
{
ans = M;
L = M+;
}
else R = M-;
}
printf("%d\n", ans);
}
}
return ;
}
Uva 11478 Halum操作的更多相关文章
- UVA - 11478 - Halum(二分+差分约束系统)
Problem UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...
- UVA 11478 Halum
Halum Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 114 ...
- UVA 11478 Halum(用bellman-ford解差分约束)
对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...
- UVA 11478 Halum(差分约束)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...
- UVA 11478 Halum (差分约束)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVA - 11478 Halum 二分+差分约束
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...
- 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)
layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...
- 【Halum操作-UVA 11478】
·英文题,述大意: 输入有向图一个(什么边的端点啊,边权啊).每次可以选择一个节点和一个整数,然后把这个结点的出边边权加上该整数,入边边权减去该整数,目标:使得所有边的最小值非负且尽量大. ...
- Halum UVA - 11478 差分约束
输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 复制 2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 ...
随机推荐
- cursor 手型样式
cursor:hand 与 cursor:pointer 的效果是一样,都像手形光标.但用FireFox浏览时才注意到使用cursor:hand在FireFox里并被支持.cursor:hand :I ...
- artdialog4.1.7 中父页面给子页面传值
artdialog4.1.7中父页面给子页面传值时看了一些网友的解决方法: 在父页面声明全局变量 var returnValue=“ ”,子页面用art.dialog.opener.returnVal ...
- BizTalk动手实验(十)业务活动监控(BAM)演示
1 课程简介 通过本课程熟悉业务活动监控(BAM)的使用及各组件的配置. (本环境为Windows 2008 32位操作系统环境 + Visual Studio 2010 + BizTalk 210) ...
- 关闭SSMS的事务自动提交,改为手动提交
SQLServer 2005-2008-2012使用Oracle时,默认是手动提交.而SQLServer2005中,默认是自动提交,但是SQLServer支持配置. 方法: 用SSMS连接到SQL S ...
- wordpress 导航相关的函数
上一篇文章.下一篇文章 previous_post_link( $format = '« %link', $link = '%title', $in_same_term = false, $exclu ...
- P1514 引水入城
概述 首先,这是一道好题,这道题既考查了图论的dfs知识,又考察了区间贪心问题中很典型的区间覆盖问题,着实是一道好题. 大概思路说明 我们观察到,只有第一行可以放水库,而第一行在哪里放水库的结果就是直 ...
- Xcode 杂七杂八
一.Exception 的捕捉 1.message send to dealloc instance a, 输出控制台(lldb)后面输入:c + enter, 找到对应的行 b, po ...
- reporting service & wpf
WPF做Windows程序界面很好很强大,RDLC做报表免费又好用,如何将两者强强联合呢? 方法1: 可以直接在WPF项目中加入一个WinForm窗体,在这个窗体上进行报表操作,与一般的Wi ...
- JS 的trim()
去除字符串左右两端的空格,在vbscript里 可 用 trim.ltrim 或 rtrim,但 js 却没有这 3个 内置方法,需 手工编写.下面的实现方法 用到 正则表达式,效率不错, 把 三 ...
- php实现数字格式化,数字每三位加逗号的功能函数
原地址:http://www.jb51.net/article/73781.htm php实现数字格式化,数字每三位加逗号的功能函数,具体代码如下: ? 1 2 3 4 5 6 7 8 9 10 11 ...