题目链接:http://vjudge.net/contest/143318#problem/B

题意:给定一个有向图,每条边都有一个权值。每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后让所有边的权值的最小值大于零且尽量大。

分析:

最小值尽量大,二分,最大不能超过最大边,要是最大边的话,其他边满足不了非负;

题意说的各种操作,他互不影响;也就变成了操作各边。

对于各点的操作来说:

令sum(u) 是作用于 u 上的所有 d 之和;

a—> b边的权值就是: w(a,b) +sum(a) - sum(b)>=x(答案);

对上式 变形: sum(b) - sum(a) <= w(a,b) -x;

sum(b) - sum(a) 就是对这条边的操作。

这就是一个差分约束系统。

枚举这个sum(b) - sum(a) ,要是有负环,就是查分系统无解。

没有负环,说明,这个最小值还可以大一点。

#include <bits/stdc++.h>
using namespace std; const int maxn = + ; struct Edge
{
int from,to;
double dist;
}; struct BellmanFord
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
double d[maxn];
int p[maxn];
int cnt[maxn]; void init(int n)
{
this->n = n;
for(int i = ; i < n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, double dist)
{
edges.push_back((Edge)
{
from, to, dist
});
m = edges.size();
G[from].push_back(m-);
} bool negativeCycle()
{
queue<int> Q;
memset(inq, , sizeof(inq));
memset(cnt, , sizeof(cnt));
for(int i = ; i < n; i++)
{
d[i] = ;
inq[] = true;
Q.push(i);
} while(!Q.empty())
{
int u = Q.front();
Q.pop();
inq[u] = false;
for(int i = ; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist)
{
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to] = true;
if(++cnt[e.to] > n) return true;
}
}
}
}
return false;
}
}; BellmanFord solver; bool test(int x)
{
for(int i=; i<solver.m; i++)
{
solver.edges[i].dist -=x;
}
bool ret = solver.negativeCycle();
for(int i=; i<solver.m; i++)
{
solver.edges[i].dist +=x;
}
return !ret;
} int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{ solver.init(n);
int ub = ; for(int i=; i<m; i++)
{
int u,v,dist;
scanf("%d%d%d",&u,&v,&dist);
ub = max(ub,dist);
u--;
v--;
solver.AddEdge(u,v,dist);
} if(test(ub+)) puts("Infinite");
else if(!test()) puts("No Solution");
else
{
int L = , R = ub, ans = ;
while(L <= R)
{
int M = L + (R-L)/;
if(test(M)) //没有负环
{
ans = M;
L = M+;
}
else R = M-;
}
printf("%d\n", ans);
}
}
return ;
}

Uva 11478 Halum操作的更多相关文章

  1. UVA - 11478 - Halum(二分+差分约束系统)

    Problem  UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...

  2. UVA 11478 Halum

    Halum Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: 114 ...

  3. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  4. UVA 11478 Halum(差分约束)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...

  5. UVA 11478 Halum (差分约束)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  6. UVA - 11478 Halum 二分+差分约束

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...

  7. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  8. 【Halum操作-UVA 11478】

    ·英文题,述大意:      输入有向图一个(什么边的端点啊,边权啊).每次可以选择一个节点和一个整数,然后把这个结点的出边边权加上该整数,入边边权减去该整数,目标:使得所有边的最小值非负且尽量大. ...

  9. Halum UVA - 11478 差分约束

    输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 复制 2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 ...

随机推荐

  1. Hibernate HQL的update方法详解

    虽然hibernate提供了许多方法对数据库进行更新,但是这的确不能满足开发需要.现在讲解一下用hql语句对数据进行更新. 不使用参数绑定格式String hql="update User ...

  2. ajaxfileupload.js

    jQuery.extend({ createUploadIframe: function(id, uri) { //create frame var frameId = 'jUploadFrame' ...

  3. javascript遍历数组最优写法

    var arr = [];//这样定义的数组,是null,等待开辟空间 var arr = new Array();//不建议使用,会占用一块内存空间 var i=0,len=arr.length; ...

  4. php extension memcache and memcached module on centos6

    环境 centos6 php5.6 nginx 1.8 防火墙均关闭 我在这里简单描述一下过程 #install nginxyum -y install pcre pcre-devel openssl ...

  5. ss命令

    看到好的博文,所以记录一下.本文出自转载. ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它 ...

  6. vba 工作案例-sheet间拷贝内容

    核心代码就是Copy Destination. Sub copy_data() ' ' copy_data 宏 ' ' Dim fzjgs() As Variant Dim cities As Var ...

  7. Ignoring Extra Elements in mongoDB C# Driver

    MongoDB删除字段后会报错: Element ... does not match any field or property of class Customer. 需要在实体类增加 [BsonI ...

  8. pycharm 单元测试失败 not found while handling absolute import

    pycharm 单元测试运行错误 RuntimeWarning: Parent module 'tests' not found while handling absolute import impo ...

  9. CSS之cssText

    更改元素样式 <div style="width:100px;height:100px;text-align:center;line-height:100px;"> T ...

  10. k8s入门系列之介绍篇

    •Kubernetes介绍1.背景介绍 云计算飞速发展 - IaaS - PaaS - SaaS Docker技术突飞猛进 - 一次构建,到处运行 - 容器的快速轻量 - 完整的生态环境2.什么是ku ...