不好做的一道题,发现String Algorithm可以出很多很难的题,特别是多指针,DP,数学推导的题。参考了许多资料:

http://leetcode.com/2010/11/finding-minimum-window-in-s-which.html

http://www.geeksforgeeks.org/find-the-smallest-window-in-a-string-containing-all-characters-of-another-string/

http://tianrunhe.wordpress.com/2013/03/23/minimum-window-substring/

最有用的最后一个资料,因为里面有一个例子详细说明了如何变化,我加上了一些中文备注:

For example,
S = “ADOBECODEBANC”
T = “ABC”
Minimum window is “BANC”.

Thoughts:
The idea is from here. I try to rephrase it a little bit here. The general idea is that we find a window first, not necessarily the minimum, but it’s the first one we could find, traveling from the beginning of S. We could easily do this by keeping a count of the target characters we have found. After finding an candidate solution, we try to optimize it. We do this by going forward in S and trying to see if we could replace the first character of our candidate. If we find one, we then find a new candidate and we update our knowledge about the minimum. We keep doing this until we reach the end of S. For the giving example:

  1. We start with our very first window: “ADOBEC”, windowSize = 6. We now have “A”:1, “B”:1, “C”:1 (保存在needToFind数组里)
  2. We skip the following character “ODE” since none of them is in our target T. We then see another “B” so we update “B”:2. Our candidate solution starts with an “A” so getting another “B” cannot make us a “trade”. (体现在代码就是只有满足hasFound[S.charAt(start)] > needToFind[S.charAt(start)]) 才能移动左指针start)
  3. We then see another “A” so we update “A”:2. Now we have two “A”s and we know we only need 1. If we keep the new position of this “A” and disregard the old one, we could move forward of our starting position of window. We move from A->D->O->B. Can we keep moving? Yes, since we know we have 2 “B”s so we can also disregard this one. So keep moving until we hit “C”: we only have 1 “C” so we have to stop. Therefore, we have a new candidate solution, “CODEBA”. Our new map is updated to “A”:1, “B”:1, “C”:1.
  4. We skip the next “N” (这里忽略所有不在T的字符:用needToFind[S.charAt(start)] == 0来判断) and we arrive at “C”. Now we have two “C”s so we can move forward the starting position of last candidate: we move along this path C->O->D->E until we hit “B”. We only have one “B” so we have to stop. We have yet another new candidate, “BANC”.
  5. We have hit the end of S so we just output our best candidate, which is “BANC”.
package Level4;

/**
* Minimum Window Substring
*
* Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). For example,
S = "ADOBECODEBANC"
T = "ABC"
Minimum window is "BANC". Note:
If there is no such window in S that covers all characters in T, return the emtpy string "". If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S. Discuss *
*/
public class S76 { public static void main(String[] args) {
} public String minWindow(String S, String T) {
// 因为处理的是字符,所以可以利用ASCII字符来保存
int[] needToFind = new int[256]; // 保存T中需要查找字符的个数,该数组一旦初始化完毕就不再改动
int[] hasFound = new int[256]; // 保存S中已经找到字符的个数,该数组会动态变化 for(int i=0; i<T.length(); i++){ // 初始化needToFind为需要查找字符的个数,
needToFind[T.charAt(i)]++; // 如例子中T为ABC,则将会被初始化为:needToFind[65]=1, nTF[66]=2, nTF[67]=3
} int count = 0; // 用于检测第一个符合T的S的字串
int minWindowSize = Integer.MAX_VALUE; // 最小窗口大小
int start = 0, end = 0; // 窗口的开始喝结束指针
String window = ""; // 最小窗口对应的字串 for(; end<S.length(); end++){ // 用end来遍历S字符串
if(needToFind[S.charAt(end)] == 0){ // 表示可以忽略的字符,即除了T(ABC)外的所有字符
continue;
}
char c = S.charAt(end);
hasFound[c]++; // 找到一个需要找的字符 if(hasFound[c] <= needToFind[c]){ // 如果找到的已经超过了需要的,就没必要继续增加count
count++;
}
if(count == T.length()){ // 该窗口中至少包含了T
while(needToFind[S.charAt(start)] == 0 || // 压缩窗口,往后移start指针,一种情况是start指针指的都是可忽略的字符
hasFound[S.charAt(start)] > needToFind[S.charAt(start)]){ // 另一种情况是已经找到字符的个数超过了需要找的个数,因此可以舍弃掉多余的部分
if(hasFound[S.charAt(start)] > needToFind[S.charAt(start)]){
hasFound[S.charAt(start)]--; // 舍弃掉多余的部分
}
start++; // 压缩窗口
} if(end-start+1 < minWindowSize){ // 保存最小窗口
minWindowSize = end-start+1;
window = S.substring(start, end+1);
}
}
}
return window;
}
}

Minimum Window Substring @LeetCode的更多相关文章

  1. Minimum Window Substring leetcode java

    题目: Given a string S and a string T, find the minimum window in S which will contain all the charact ...

  2. LeetCode解题报告—— Minimum Window Substring && Largest Rectangle in Histogram

    1. Minimum Window Substring Given a string S and a string T, find the minimum window in S which will ...

  3. 【LeetCode】76. Minimum Window Substring

    Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...

  4. 53. Minimum Window Substring

    Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...

  5. leetcode76. Minimum Window Substring

    leetcode76. Minimum Window Substring 题意: 给定字符串S和字符串T,找到S中的最小窗口,其中将包含复杂度O(n)中T中的所有字符. 例如, S ="AD ...

  6. 刷题76. Minimum Window Substring

    一.题目说明 题目76. Minimum Window Substring,求字符串S中最小连续字符串,包括字符串T中的所有字符,复杂度要求是O(n).难度是Hard! 二.我的解答 先说我的思路: ...

  7. [LeetCode] Minimum Window Substring 最小窗口子串

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

  8. leetcode@ [30/76] Substring with Concatenation of All Words & Minimum Window Substring (Hashtable, Two Pointers)

    https://leetcode.com/problems/substring-with-concatenation-of-all-words/ You are given a string, s, ...

  9. [LeetCode] 76. Minimum Window Substring 解题思路

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

随机推荐

  1. Android UiAutomator 自动化测试编译运行---新手2

    1.首先打开eclipse创建java项目

  2. 捕捉小括号获取的内容保存在RegExp的$1 $2..属性中

    ~~~~捕捉小括号获取的内容保存在RegExp的$1 $2..属性中 var reg=/^(-?\d+)(px|pt|em|in)?$/;if(reg.test(svalue)){           ...

  3. Protel中放置汉字工具的使用图示

    首先先到网上下载Protel中放置汉字工具ProtelHz.然后把ProtelHz中的文件全部解压到Protel99se安装目录X:\Program Files\Design Explorer 99 ...

  4. 手机SIM卡知识大科普

    SIM卡 SIM卡是(Subscriber Identity Module 客户识别模块)的缩写,也称为智能卡.用户身份识别卡,GSM数字移动电话机必须装上此卡方能使用.它在一电脑芯片上存储了数字移动 ...

  5. 导出Ext.grid.Panel到excel

    1.客户端定义,基本的想法是form提交表格头定义,数据,以json方式传输 Ext.grid.Panel.addMembers({ exportExcel:function(options){ if ...

  6. 初试PL/SQL并行编程

    -----------------------------Cryking原创------------------------------ -----------------------转载请注明出处, ...

  7. projecteuler----&gt;problem=8----Largest product in a series

    title: The four adjacent digits in the 1000-digit number that have the greatest product are 9 9 8 9 ...

  8. Cstyle的札记,Freertos内核具体解释,第0篇

        Freertos是一个硬实时内核,支持众多的微处理器架构,我们能够从它的官网(www.freertos.ort)下载它的sourcecode,同一时候也能够看出它支持了几十种的微处理器架构,这 ...

  9. java 构造函数是如何执行的

    1.构造函数不是方法!! 原因1:方法的话,会直接执行方法体内的代码,但是构造函数首先执行的不是{}里的代码块,而是给对象的成员初始化: 2.方法可以被调用其他方法调用,但是构造函数不能被方法或变量调 ...

  10. SQL SERVER 2005 同步复制技术(转)

    SQL SERVER 2005 同步复制技术 以下实现复制步骤(以快照复制为例) 运行平台SQL SERVER 2005 一.准备工作: 1.建立一个 WINDOWS 用户,设置为管理员权限,并设置密 ...