转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Jack Straws
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3512   Accepted: 1601

Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

这题还是比较简单的,就是问两条线段是否直接或者间接的相连。注意考虑好有一段是重叠的情况即可

 /**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author xyiyy @https://github.com/xyiyy
*/ #include <iostream>
#include <fstream> //#####################
//Author:fraud
//Blog: http://www.cnblogs.com/fraud/
//#####################
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype> using namespace std;
#define rep(X, N) for(int X=0;X<N;X++)
#define rep2(X, L, R) for(int X=L;X<=R;X++) const int MAXN = ;
//
// Created by xyiyy on 2015/8/8.
// #ifndef JHELPER_EXAMPLE_PROJECT_UNIONFINDSET_HPP
#define JHELPER_EXAMPLE_PROJECT_UNIONFINDSET_HPP int pa[MAXN], ra[MAXN]; void init(int n) {
rep(i, n + )pa[i] = i, ra[i] = ;
} int find(int x) {
if (pa[x] != x)pa[x] = find(pa[x]);
return pa[x];
} int unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y)return ;
if (ra[x] < ra[y])pa[x] = y;
else {
pa[y] = x;
if (ra[x] == ra[y])ra[x]++;
}
return ;
} bool same(int x, int y) {
return find(x) == find(y);
} #endif //JHELPER_EXAMPLE_PROJECT_UNIONFINDSET_HPP //
// Created by xyiyy on 2015/8/10.
// #ifndef JHELPER_EXAMPLE_PROJECT_P_HPP
#define JHELPER_EXAMPLE_PROJECT_P_HPP const double EPS = 1e-; class P {
public:
double x, y; P() { } P(double _x, double _y) {
x = _x;
y = _y;
} double add(double a, double b) {
if (fabs(a + b) < EPS * (fabs(a) + fabs(b)))return ;
return a + b;
} P operator+(const P &p) {
return P(add(x, p.x), add(y, p.y));
} P operator-(const P &p) {
return P(add(x, -p.x), add(y, -p.y));
} P operator*(const double &d) {
return P(x * d, y * d);
} P operator/(const double &d) {
return P(x / d, y / d);
} double det(P p) {
return add(x * p.y, -y * p.x);
} //线段相交判定
bool crsSS(P p1, P p2, P q1, P q2) {
if (max(p1.x, p2.x) + EPS < min(q1.x, q2.x))return false;
if (max(q1.x, q2.x) + EPS < min(p1.x, p2.x))return false;
if (max(p1.y, p2.y) + EPS < min(q1.y, q2.y))return false;
if (max(q1.y, q2.y) + EPS < min(p1.y, p2.y))return false;
/*(if((p1 - p2).det(q1 - q2) == 0){
return (on_seg(p1,p2,q1) || on_seg(p1,p2,q2) || on_seg(q1,q2,p1) || on_seg(q1,q2,p2));
}else{
P r = intersection(p1,p2,q1,q2);
return on_seg(p1,p2,r) && on_seg(q1,q2,r); }*/
return (p2 - p1).det(q1 - p1) * (p2 - p1).det(q2 - p1) <=
&& (q2 - q1).det(p1 - q1) * (q2 - q1).det(p2 - q1) <= ;
} //直线和直线的交点
/*P isLL(P p1,P p2,P q1,P q2){
double d = (q2 - q1).det(p2 - p1);
if(sig(d)==0)return NULL;
return intersection(p1,p2,q1,q2);
}*/ //四点共圆判定
/*bool onC(P p1,P p2,P p3,P p4){
P c = CCenter(p1,p2,p3);
if(c == NULL) return false;
return add((c - p1).abs2(), -(c - p4).abs2()) == 0;
}*/ //三点共圆的圆心
/*P CCenter(P p1,P p2,P p3){
//if(disLP(p1, p2, p3) < EPS)return NULL;//三点共线
P q1 = (p1 + p2) * 0.5;
P q2 = q1 + ((p1 - p2).rot90());
P s1 = (p3 + p2) * 0.5;
P s2 = s1 + ((p3 - p2).rot90());
return isLL(q1,q2,s1,s2);
}*/ }; #endif //JHELPER_EXAMPLE_PROJECT_P_HPP class poj1127 {
public:
void solve(std::istream &in, std::ostream &out) {
int n;
P *p = new P[];
P *q = new P[];
while (in >> n && n) {
init(n + );
rep2(i, , n) {
in >> p[i].x >> p[i].y >> q[i].x >> q[i].y;
}
rep2(i, , n) {
rep2(j, , n) {
if (p[i].crsSS(p[i], q[i], p[j], q[j]))unite(i, j);
}
}
int u, v;
while (in >> u >> v && (u && v)) {
if (same(u, v))out << "CONNECTED" << endl;
else out << "NOT CONNECTED" << endl;
}
}
}
}; int main() {
std::ios::sync_with_stdio(false);
std::cin.tie();
poj1127 solver;
std::istream &in(std::cin);
std::ostream &out(std::cout);
solver.solve(in, out);
return ;
}

代码君

poj1127 Jack Straws(线段相交+并查集)的更多相关文章

  1. TZOJ 1840 Jack Straws(线段相交+并查集)

    描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...

  2. [poj 1127]Jack Straws[线段相交][并查集]

    题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...

  3. TTTTTTTTTTTTTT poj 1127 Jack Straws 线段相交+并查集

    题意: 有n个木棍,给出木棍的两个端点的x,y坐标,判断其中某两个线段是否连通(可通过其他线段连通) #include <iostream> #include <cstdio> ...

  4. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  5. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  6. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. 判断线段相交(hdu1558 Segment set 线段相交+并查集)

    先说一下题目大意:给定一些线段,这些线段顺序编号,这时候如果两条线段相交,则把他们加入到一个集合中,问给定一个线段序号,求在此集合中有多少条线段. 这个题的难度在于怎么判断线段相交,判断玩相交之后就是 ...

  9. hdu 1558 (线段相交+并查集) Segment set

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...

随机推荐

  1. PHP判断是否微新浏览器

    $inwechat = false; $user_agent = $_SERVER['HTTP_USER_AGENT']; if (strpos($user_agent, 'MicroMessenge ...

  2. iOS开发——C篇&预处理

    其实在C语言的远行过程中,有这样一个流程, 编译:C----〉可执行文件(可以运行的) 1:.C------.i 预处理(之前和之后还是C语法)2: .i-------.s 编译(之前是C语法,之后是 ...

  3. 如何升级nodejs版本

    直接下载最新版安装即可,例如我本地的nodejs版本为: y@y:untitled$ node -v v0.10.33 当前node官网最新版本为:Current Version: v0.12.2 下 ...

  4. PHP中的常量

    常量与变量不一样,一旦被定义就可以全局访问. 例如: <?php define('CONST_NAME','shiyingyan'); define('RESULT_OK',1); define ...

  5. 安卓各文件存储路径汇总(Android file path)

    写下来,省得以后不记得到处翻: Environment.getDataDirectory() = /data Environment.getDownloadCacheDirectory() = /ca ...

  6. 可用版本的host

    http://blog.csdn.net/ljphhj/article/details/11939591 http://my.oschina.net/lvkun0223/blog/282356 两者的 ...

  7. IIS not allow PUT and DELETE method

    refer : http://stackoverflow.com/questions/10906411/asp-net-web-api-put-delete-verbs-not-allowed-iis ...

  8. $provide.decorator

    $provide.decorator 是angular 提供的一个功能. 目的是让我们可以扩展或装修我们的服务. var app = angular.module("app", [ ...

  9. Windows内存小结(有好多图,比较清楚)

    以前写过一篇理解程序内存, 当时主要是针对用户态,下面再稍微深入一点: 我们以32位程序为例(不启用AWE), 总共4G虚拟空间,其中低2G属于用户态, 高2G属于操作系统内核, 每个程序都有自己的低 ...

  10. protocol buffer和当年corba ,和现在SOA有啥异同点

    CORBA是对象管理集团(OMG)的一个标准,使得不同语言编写的,运行在不同计算机上的能够协同工作.标准包括分布式计算的通讯协议(GIOP和IIOP),可映射到多种语言的接口描述语言(IDL),对象请 ...