lightOJ  1317  Throwing Balls into the Baskets(期望)  解题报告

题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88890#problem/A

题目:

Description

You probably have played the game "Throwing Balls into the Basket". It is a simple game. You have to throw a ball into a basket from a certain distance. One day we (the AIUB ACMMER) were playing the game. But it was slightly different from the main game. In our game we were N people trying to throw balls into M identical Baskets. At each turn we all were selecting a basket and trying to throw a ball into it. After the game we saw exactly S balls were successful. Now you will be given the value of N and M. For each player probability of throwing a ball into any basket successfully is P. Assume that there are infinitely many balls and the probability of choosing a basket by any player is 1/M. If multiple people choose a common basket and throw their ball, you can assume that their balls will not conflict, and the probability remains same for getting inside a basket. You have to find the expected number of balls entered into the baskets after K turns.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing three integers N (1 ≤ N ≤ 16), M (1 ≤ M ≤ 100) and K (0 ≤ K ≤ 100) and a real number P (0 P ≤ 1). P contains at most three places after the decimal point.

Output

For each case, print the case number and the expected number of balls. Errors less than 10-6 will be ignored.

Sample Input

2

1 1 1 0.5

1 1 2 0.5

Sample Output

Case 1: 0.5

Case 2: 1.000000

题目大意:

有n个人,m个篮筐,一共打了k轮,每轮每个人可以投一个球,每个球投进的概率都是p,求k轮后,投中的球的期望是多少?

分析:

因为每个人投进的概率都是相同的,所以期望也是相同的。因此只需要求出第一轮的期望就可以了,总期望=k*第一轮的期望。

代码:

 #include<cstdio>
#include<iostream>
using namespace std; int t,n,m,k;
double p,ans;
int a[][]; void init()
{
a[][]=;
a[][]=;
for(int i=;i<;i++)
{
a[i][i]=;
a[i][]=;
for(int j=;j<i;j++)
a[i][j]=a[i-][j]+a[i-][j-];
}
} double count(int j)
{
double b=1.0;
for(int i=;i<j;i++)
b=b*p;//投中的期望
for(int i=;i<n-j;i++)
b=b*(1.0-p);//没投中的期望
return b*j*a[n][j];
} int main()
{
int c=;
scanf("%d",&t);
init();
while(t--)
{
scanf("%d%d%d%lf",&n,&m,&k,&p);
ans=0.0;//小数
for(int i=;i<=n;i++)
ans+=count(i);//第一轮的期望
printf("Case %d: %.7lf\n",c++,ans*k);
}
return ;
}

lightOJ 1317 Throwing Balls into the Baskets的更多相关文章

  1. LightOJ - 1317 Throwing Balls into the Baskets 期望

    题目大意:有N个人,M个篮框.K个回合,每一个回合每一个人能够投一颗球,每一个人的命中率都是同样的P.问K回合后,投中的球的期望数是多少 解题思路:由于每一个人的投篮都是一个独立的事件.互不影响.所以 ...

  2. Light OJ 1317 Throwing Balls into the Baskets 概率DP

    n个人 m个篮子 每一轮每一个人能够选m个篮子中一个扔球 扔中的概率都是p 求k轮后全部篮子里面球数量的期望值 依据全期望公式 进行一轮球数量的期望值为dp[1]*1+dp[2]*2+...+dp[ ...

  3. LightOj_1317 Throwing Balls into the Baskets

    题目链接 题意: 有N个人, M个篮框, 每个人投进球的概率是P. 问每个人投K次后, 进球数的期望. 思路: 每个人都是相互独立的, 求出一个人进球数的期望即可. 进球数和篮框的选择貌似没有什么关系 ...

  4. ACM第六周竞赛题目——A LightOJ 1317

    A - A Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status P ...

  5. LightOJ 1317 第八次比赛 A 题

    Description You probably have played the game "Throwing Balls into the Basket". It is a si ...

  6. LightOJ 1317 第六周比赛A题

    A - A Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu   Description Y ...

  7. LightOJ 1317

    Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %lluDescription You probab ...

  8. LightOJ - 1323 - Billiard Balls(模拟)

    链接: https://vjudge.net/problem/LightOJ-1323 题意: You are given a rectangular billiard board, L and W ...

  9. lightoj 1064 Throwing Dice

    题意:给你n个骰子,求n个骰子的和不小于x的概率. 刚开始想每给一组数就计算一次~~太笨了- -,看了别人的代码,用dp,而且是一次就初始化完成,每次取对应的数据就行了.WA了好多次啊,首先不明白的就 ...

随机推荐

  1. hdu 4902 Nice boat 线段树

    题目链接 给n个数, 两种操作, 第一种是将区间内的数变成x, 第二种是将区间内大于x的数变为gcd(x, a[i]). 开三个数组, 一个记录区间最大值, 这样可以判断是否更新这一区间, 一个laz ...

  2. [C++]Store Credit——Google Code Jam Qualification Round Africa 2010

    Google Code Jam Qualification Round Africa 2010 的第一题,很简单. Problem You receive a credit C at a local ...

  3. 贴片陶瓷电容的NPO、C0G、X7R、X5R、Y5V、Z5U辨析

    NPO与X7R.X5R.Y5V.Z5U神马的有啥区别?主要是介质材料不同.不同介质种类由于它的主要极化类型不一样,其对电场变化的响应速度和极化率亦不一样. 在相同的体积下的容量就不同,随之带来的电容器 ...

  4. php入门微理解

    1.php是什么?(来自百度百科) php:Hypertext preprocessor(超文本预处理器).一种开源脚本语言.主要用于web开发. 2.与其它语言的关系 介于HTML和C/C++,Ja ...

  5. FPGA STA(静态时序分析)

    1 FPGA设计过程中所遇到的路径有输入到触发器,触发器到触发器,触发器到输出,例如以下图所看到的: 这些路径与输入延时输出延时,建立和保持时序有关. 2. 应用背景 静态时序分析简称STA,它是一种 ...

  6. Jquery $.extend的重载方法详述

    1 $.extend(result,item1,item2,item3,........)  -这个重载方法主要是用来合并,将所有的参数都合并到result中,并返回result,但是这样会破坏res ...

  7. 16进制的颜色怎么转换为我们iOS所用的RGB颜色

    这个我们就是可以直接宏定义到 我们的工程中,这样我们就可以用我们UI小妹,给我们16进制的颜色表示,愉快的编程了... #define UIColorFromRGB(rgbValue) [UIColo ...

  8. AOP annotation

    1.xml文件 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http ...

  9. 在Mac pro上如何配置adb命令?

    在Mac pro上如何将Android SDK的adb命令添加到环境变量中,这里将进行说明! 方法/步骤 1 启动终端,可以在Spotlight中搜索“终端” 2 进入当前用户的HOME目录,命令如下 ...

  10. BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)

    不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...