1 #include <iostream>
#include <cmath>
#include <algorithm>
using namespace std; int get2(long long n){
if(n==)
return ;
int cnt =;
while(n){
cnt += n/;
n = n/;
}
return cnt;
}
int main(){ int t;
cin>>t;
long long n,m;
while(t--){
cin>>n>>m;
long long z = n-(m+)/;
long long w = (m-)/;
if(get2(z)-get2(w)-get2(z-w)>){
cout<<<<endl;
}else{
cout<<<<endl;
}
}
return ;
}

poj 1430 第二类斯特林数的更多相关文章

  1. POJ 1671 第二类斯特林数

    思路: 递推出来斯特林数 求个和 if(i==j)f[i][j]=1; else f[i][j]=f[i-1][j-1]+f[i-1][j]*j; //By SiriusRen #include &l ...

  2. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  3. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  4. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  5. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

  6. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

  7. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  8. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  9. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

随机推荐

  1. HDU 4366 Successor(树链剖分+zkw线段树+扫描线)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4366 [题目大意] 有一个公司,每个员工都有一个上司,所有的人呈树状关系,现在给出每个人的忠诚值和 ...

  2. Windows Latex 中日文字体设置例

    中文字体例: \documentclass[CJK]{article} \usepackage{CJKutf8} \newcommand{\songti}{\CJKfamily{song}} % 宋体 ...

  3. php获取apk信息

    使用方法如下: <?php require('apk_parser.php'); $p = new ApkParser(); /* if($argc<2) { echo "usa ...

  4. C++学习笔记6

    泛型算法 1. 算法怎样工作 每一个泛型算法的实现都独立于单独的容器.这些算法还是大而不全的,而且不依赖于容器存储的元素类型.为了知道算法怎样工作,让我们深入了解find 操作.该操作的任务是在一个未 ...

  5. CSS learnning...

    "Whenever this property changes, apply that change slowly." The property transition: width ...

  6. iOS面试题03-UI控件

    UI控件面试题 1.怎么解决缓存池端的问题(cell) 回答:1.>OS中不存在缓存池的情况,因为通常我们iOS开发,对象都是在需要的时候才会创建, 有种常用的说话叫做懒加载,还有在UITabl ...

  7. [Swust OJ 402]--皇宫看守(树形dp)

    题目链接:http://acm.swust.edu.cn/problem/402/ Time limit(ms): 5000 Memory limit(kb): 65535   Description ...

  8. C++重载赋值运算符

    这是一道C++的面试题,下面在这篇博客中分析一下这个问题.先上题目: //题目:如下为类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString { public: ...

  9. IDEA 15 社区版 Maven项目 启动Tomcat调试

    1.在pom下添加Tomcat插件: <plugin> <groupId>org.apache.tomcat.maven</groupId> <artifac ...

  10. 利用python进行数据分析之绘图和可视化

    matplotlib API入门 使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,ma ...