2751: [HAOI2012]容易题(easy)

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 872  Solved: 377
[Submit][Status]

Description

为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input

第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5
1 1
1 1
2 2
2 3
4 3

Sample Output

90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18

HINT

数据范围

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m

Source

题解:

一眼题,不解释。。。

不在家,map记不下来。。。

代码:(copy)

 #include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
#define mod 1000000007
#define K 100010
struct lim{
int x,y;
}l[K];
LL n,m,tot,ans=,mul,tomul;
int k,cnt;
inline bool cmp(const lim &a,const lim &b)
{return a.x<b.x||a.x==b.x&&a.y<b.y;}
inline void quickpow(LL &ans,LL a,LL b)
{
LL mult=a;
while (b)
{
if (b&)ans=(ans*mult)%mod;
mult=(mult*mult)%mod;
b>>=;
}
}
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int main()
{
n=read();m=read();k=read();mul=(n*(n+)/)%mod;
LL x,y;
for(int i=;i<=k;i++)
{
l[i].x=read();l[i].y=read();
}
sort(l+,l+k+,cmp);
tot=m;tomul=mul-l[].y;
for (int i=;i<=k;i++)
{
if (l[i].x==l[i-].x)
{
if (l[i].y==l[i-].y)continue;
tomul-=l[i].y;
}else
{
tot--;
if (tomul<)tomul=tomul%mod+mod;
ans=(ans*tomul)%mod;
tomul=mul-l[i].y;
}
}
if (mul!=tomul)
{
tot--;
if (tomul<)tomul=tomul%mod+mod;
ans=(ans*tomul)%mod;
}
quickpow(ans,mul,tot);
printf("%lld",ans);
}

BZOJ2751: [HAOI2012]容易题(easy)的更多相关文章

  1. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  2. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  3. BZOJ 2751: [HAOI2012]容易题(easy) 数学

    2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...

  4. BZOJ 2751: [HAOI2012]容易题(easy)( )

    有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...

  5. 2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1087  Solved: 477[Submit][ ...

  6. 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题

    Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...

  7. BZOJ2751 [HAOI2012]容易题

    Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取 ...

  8. bzoj 2751 [HAOI2012]容易题(easy)(数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2751 [题意] m个位置,已知每个位置的可能取值,问所有可能情况的每个位置的乘积的和. ...

  9. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

随机推荐

  1. i&1、负数二进制

    if(i&1==1) 表示 如果是 奇数 则...i&1 -- 按位与运算,取 2进制整数 i 的最低位,如果最低位是1 则得1,如果最低位是0 则得0. 奇数 i 的最低位 是1,偶 ...

  2. bootstrap data

    bootstrap data 用法 <div data-role="page" data-last-value="43" data-hidden=&quo ...

  3. [MySQL CPU]线上飙升800%,load达到12的解决过程

    接到报警通知,负载过高,达到800%,load也过高,有11了. MySQL版本号为5.6.12-log 1 top 之后,确实是mysqld进程占领了全部资源. 2 查看error日志,无不论什么异 ...

  4. Android学习路线(二十七)键值对(SharedPreferences)存储

    假设你又一个相对较小的键值对数据想要保存,你应该使用SharedPreferences APIs.一个SharedPreferences 对象指向一个包括键值对的文件,它提供简单的方法来读写他们.每一 ...

  5. linux内存机制

    ~# free -m         total used  free shared buffers cachedMem: 16086 8579 7507    0      152      800 ...

  6. 定时改变App主题的方案

    1.将接口返回的图片缓存到本地,由于写data到本地是耗时操作,为了不阻塞主线程,可开启子线程来做此操作 dispatch_queue_t queue = dispatch_queue_create( ...

  7. mybatis知识总结

    基于昨天的mybatis入门详解,今天我们再来看看mybatis稍微高深些的知识点. 1.解决Model属性和数据库字段不一致的问题 1),开启驼峰命名 2),使用resultMap进行映射, < ...

  8. QQ 国际版(International version) - 关闭弹出资讯

    1,打开QQ面板,点击左下角的 "企鹅"图标.选择 "Setting". 2,在弹出的 "Setting"面板中,选择 "Priv ...

  9. AngularJs练习Demo18 Resource

    @{ Layout = null; } <!DOCTYPE html> <html> <head> <meta name="viewport&quo ...

  10. SVN搭建本地版本控制仓库

    1.安装TortoiseSVN 2.新建一个文件夹,比如F:\SvnProjectsCfg 3.在F:\SvnProjectsCfg新建一个文件夹project1,右键该文件夹选择“create re ...