正确写流程的总体步骤是,raid1接收上层的写bio,申请一个r1_bio结构,将其中的所有bios[]指向该bio。假设盘阵中有N块盘。然后克隆N份上层的bio结构,并分别将每个bios[]指向克隆出来一个bio结构,然后进行相应设置。

  对于没有Write Behind模式而言,之后将所有这些bios[](共用页结构)放入队列pending_list中,对内存bitmap置位。接着由守护进程摘取pending_list链中的bio,然后将内存bitmap同步下刷到磁盘,紧接着立即一次性下发bio,写成功返回,同时更新bitmap状态,然后异步刷磁盘。如图4所示。

  对于设置了Write Behind模式而言,还需要将接收到的上层bio的页结构拷贝到WriteMostly盘对应的bios[]中(每个WriteMostly盘对应一份拷贝),之后将所有这些bios[]放入队列pending_list中,对内存bitmap置位。接着由守护进程摘取pending_list链中的bio,然后将内存bitmap同步下刷到磁盘,紧接着立即一次性下发bio。当只剩下WriteMostly盘未完全写成功后(即非WriteMostly盘都写成功了),则认为已经写成功,返回。等到所有WriteMostly盘真正全部写完之后才释放拷贝的页结构和r1_bio。同时更新bitmap状态,然后异步刷磁盘。如图1、2所示。

  整体的函数调用关系、进程切换关系和大体流程,如图3所示。

图1 无Write Behind模式的写流程

图2 有Write Behind模式的写流程

图3  raid1读流程整体框架图

  写流程主要涉及以下函数:

        请求函数make_request

        写请求下raid1d

        回调函数raid1_end_write_request

        写出错处理raid1d

  下面具体分析写流程。

 

1)请求函数make_request

  写请求封装成bio后,由md设备的md_make_request下发请求,md又发给具体的设备raid1,对应raid1的make_request函数,下面将从raid1的make_request开始理解该部分的流程。总体流程如图4所示。

图4  make request函数写流程整体框架图

  代码的具体分析如下:

  1. 调用md_write_start,等待盘阵的超级快更新完成之后继续下面的步骤。

    1.1    如果不为写则直接返回。

    1.2    如果阵列为临时只读状态,则设置为读写状态,设置阵列mddev的MD_RECOVERY_NEEDED位,并唤醒守护进程和同步守护线程。

    注:

    • set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);表示可能需要resync或recovery;
    • resync使各子设备上的数据同步,recovery就是恢复数据的过程。

    1.3    如果阵列为安全模式,则设置为不安全模式。

    1.4    如果阵列mddev的in_sync=1,则设置in_sync=0,表示阵列要开始进行写操作了。唤醒守护进程。

        set_bit(MD_CHANGE_CLEAN, &mddev->flags);也就是将superblock中的MD_SB_CLEAN标志清掉。

    1.5    同步in_sync标志到磁盘中阵列超级块上。

  2.  如果访问要求设置barrier,而MD设备(这里是指raid1)不支持设置barrier,则结束bio,立即返回,将-EOPNOTSUPP信息反馈给上层。

    注:这里的barrier指的是bio带有的barrier属性。

  3.  等待设备上的barrier消除。

    注:这里是指raid1自己为同步做的一套barrier。

  4.  申请一个r1_bio结构(该结构主要用于管理raid1的bio),该结构中有一个数组bios数组指向对应各磁盘的bio。

  5.  遍历盘阵中所有盘。

    5.1    如果盘存在,但是阻塞了(Blocked),那么跳出循环等待阻塞消除,重新进入循环开头。(通常由用户发ioctl设置和清除)

    5.2    如果盘存在,并且盘没有坏(!Faulty),增加该盘的下发IO计数。

      5.2.1        如果该盘坏了(Faulty),减少该盘的下发IO计数,r1_bio的bio[]数组中的该盘的bio置NULL。

      5.2.2        将r1_bio的数组中的该盘指向用户bio。targets用来表示可用的盘。

    5.3    如果是其他情况(一定是出错情况),r1_bio的数组中的该盘的bio置NULL。

  6.  如果盘阵中的可用的盘数量targets小于conf->raid_disks,则说明有的盘坏掉了。那么就将盘阵设置为降级(R1BIO_Degraded)状态。

  7.  如果设置了延迟写,需要将用户bio的数据通过调用alloc_behind_pages函数拷贝一份保存在behind_pages中。并将盘阵设置为R1BIO_BehindIO状态。

  8.  设置r1_bio的未完成请求数和延迟写的未完成请求数都置为0。

  9.  根据用户bio中的BIO_RW_BARRIER标志,确定是否设置r1_bio中的barrier标志。也就是判断是否要set_bit(R1BIO_Barrier, &r1_bio->state)。

    注:根据用户bio中的标志,确定是否设置raid-bio中的barrie标志;

      如果下挂的磁盘不支持barrier操作,则在raid1_end_write_request中加以处理,具体的处理就是在守护进程中重试。

  10. 初始化一个bio_list链b1。

  11. 遍历盘阵中所有盘。

    11.1 对于每个磁盘,克隆一份用户bio到r1_bio数组对应元素bios中,并设置相关字段以及回调函数raid1_end_write_request。

    11.2 如果设置了延迟写,则r1_bio中的数组bios每个元素的bio_vec指向保存的延迟写拷贝behind_pages。如果设置了WriteMostly模式,则对盘阵增加一个延迟写的未完成请求数。

    11.3 r1_bio->remaining记录还未提交的请求数,这里每到一个盘都会+1。

    11.4 将克隆的这份bio挂到bio_list 链b1中。

  12. 调用bitmap_startwrite,通知bitmap进行写数据块对应的设置。

  13. 将该克隆的得到的b1(多份相同的bio)加到raid1的pending_bio_list链中。

  14. 如果用户IO为sync io,则唤醒守护进程raid1d,进程切换到raid1d,由守护进程通过操作pending_bio_list链,继续处理r1_bio请求。

2)写请求下发raid1d

  pending_bio_list所有bio项是一起提交的,retry_list中的r1_bio则是逐个处理。

  如果pending_bio_list队列不为空(有等待的访问请求),则将这些请求逐一提交。在提交写请求之前,需要将内存bitmap刷磁盘(为了避免掉电等情况下,内存中的数据丢失,出现错误),保证在数据写入前完成bitmap的写入。直到pending_bio_list链表的所有请求全部提交。

  正常流程走下来,在这里就把写请求下发了。如图5所示。

图5 守护进程下发写请求

 

3)回调函数raid1_end_write_request

  总体流程如图6所示。

  首先我们不考虑出错流程。假设有5块盘,其中3块为WriteMostly盘。当设置了Write Behind时,behind remaining = 3,remaining = 5。

  如果已经返回了1个WriteMostly盘,1个非WriteMostly盘。那么还剩下2个WriteMostly盘,1个非WriteMostly盘,此时behind remaining = 2,remaining = 3。如果接下来非WriteMostly盘返回,不需要减behind remaining即到了判断语句behind remaining >= remaining - 1,所以这时该条件成立。那么设置R1BIO_Returned,endio,通知上层写请求已经结束。此时只剩下WriteMostly盘,进而达到延迟写的效果。但是此时r1_bio等相关结构体和behind pages还未释放。等WriteMostly盘返回之后,save_put_page(), bitmap_endwrite(),释放behind pages和r1_bio结构。

  如果所有WriteMostly盘都返回了,仍然有非WriteMostly盘未返回,那么一直有behind remaining < remaining,与没有设置Write Behind时效果一样。

  没有设置Write Behind的情况比较简单,参照流程图和下面的代码走读分析即可理解。

图6 raid1_end_write_request函数流程

  下面对具体代码流程进行分析:

  1.  选出要回调结束bio的盘号mirror。

  2.  如果请求要求设置barrier,但是下挂的设备不支持barrier,则设置该盘阵为R1BIO_BarrierRetry状态。跳到步骤8。

  注:这种情况是RAID1设备支持barrier bio,但是下层设备不支持;这里的barrier和make request中刚开始的时候的barrier的不同,这里的-EOPNOTSUPP值,是下发之后,下层回调传上来的值。而make_request中bio_endio传入的-EOPNOTSUPP,是将-EOPNOTSUPP回调给raid1的上层。一个是给接收到的下层设备的返回信息,一个是反馈给上层的返回信息。

  3.  r1_bio->bios[mirror]指针置为NULL。(所指原区域还未释放,用to_put指针来找)

  4.  如果状态不是"有效"的(不是uptodate),就将该盘置为出错。并将盘阵降级处理。

  5.  如果状态是”有效”的,将盘阵设置为R1BIO_Uptodate。

  6.  记录这次操作结束的在磁盘上的位置。

  7.  如果有延迟写。

    7.1    如果该盘是WriteMostly,延迟写的未完成请求数-1。

    7.2    如果只剩下WriteMostly盘的请求,并且r1_bio的状态是R1BIO_Uptodate,那么就认为写操作成功,endio返回。

    7.3    减少该盘的io下发计数。

  8.  减少一个remaining,并且检查是否全部请求都完成了(remaining为0)。如果r1_bio中所有请求都完成了,那么进入下面流程。表示该请求真的完全完成,可以释放了相关的结构了。

    8.1    如果R1BIO_BarrierRetry状态(前面设置过),那么将这个r1_bio加入retry队列。跳到retry流程。

    8.2    释放延迟写的页。

    8.3    设置bitmap attr属性为CLEAN。

    8.4    关于安全模式。

    8.5    end io。

  9.  如果计数为0,把to_put这个bio释放掉。

  当下发磁盘的写请求完成后,需要将bitmap内存页中相应的bit清零,然后把bitmap文件下刷。这些通过守护进程来做,而这个过程不需要等待写bitmap磁盘文件完成,因此是异步的。(由bitmap_daemon_work完成)这里bitmap不需要同步来做,因为可以保证数据的正确性。即使写失败,最多带来额外的同步,不带来数据的危害。

4)写出错处理raid1d

  如果接收到的上层bio是因为设置了barrier属性,而子设备又不支持barrier而失败的(这个情况只发生在写操作),则清除r1_bio的barrier属性,重新提交这个r1_bio。

  守护进程处理这种写出错的具体流程如图7所示。

图7 守护进程处理barrier bio造成的写出错流程

  具体代码流程如下:

  1.  清除r1_bio的R1BIO_BarrierRetry和R1BIO_Barrier状态位。

  2.  增加盘阵中r1_bio->remaining请求数,增加个数为盘阵中盘的个数。

  3.  对于盘阵中的每一个磁盘,克隆master_bio给它,并进行初始化。(其中原failed bio的每个page要逐一复制给新的bio,因为可能存在write behind设备)。

  4.  下发这个新的bio。

转载请注明出处:http://www.cnblogs.com/fangpei/

Raid1源代码分析--写流程的更多相关文章

  1. Raid1源代码分析--同步流程

    同步的大流程是先读,后写.所以是分两个阶段,sync_request完成第一个阶段,sync_request_write完成第二个阶段.第一个阶段由MD发起(md_do_sync),第二个阶段由守护进 ...

  2. Raid1源代码分析--读流程(重新整理)

    五.Raid1读流程分析 两个月前,刚刚接触raid1,就阅读了raid1读流程的代码,那个时候写了一篇博客.现在回过头看看,那篇的错误很多,并且很多地方没有表述清楚.所以还是决定重新写一篇以更正之前 ...

  3. Raid1源代码分析--读流程

    这篇博文不足之处较多,重新整理了一下,链接:http://www.cnblogs.com/fangpei/p/3890873.html 我阅读的代码的linux内核版本是2.6.32.61.刚进实验室 ...

  4. Raid1源代码分析--初始化流程

    初始化流程代码量比较少,也比较简单.主要是run函数.(我阅读的代码的linux内核版本是2.6.32.61) 四.初始化流程分析 run函数顾名思义,很简单这就是在RAID1开始运行时调用,进行一些 ...

  5. Raid1源代码分析--开篇总述

    前段时间由于一些事情耽搁了,最近将raid1方面的各流程整理了一遍.网上和书上,能找到关于MD下的raid1的文档资料比较少.决定开始写一个系列的关于raid1的博客,之前写过的一篇读流程也会在之后加 ...

  6. MD中bitmap源代码分析--设置流程

    1. 同步/异步刷磁盘 Bitmap文件写磁盘分同步和异步两种: 1) 同步置位:当盘阵有写请求时,对应的bitmap文件相应bit被置位,bitmap内存页被设置了DIRTY标志.而在下发写请求给磁 ...

  7. Raid1源代码分析--一些补充

    Raid1的源码的读.写.同步,在本系列博客中都已经分析完成.除了barrier机制要专门拿出来分析(下一篇会写)以外,有一些问题值得思考和注意,分析如下. 1.freeze_array是如何做的? ...

  8. MD中bitmap源代码分析--清除流程

    bitmap的清零是由bitmap_daemon_work()来实现的.Raid1守护进程定期执行时调用md_check_recovery,然后md_check_recovery会调用bitmap_d ...

  9. Raid1源代码分析--Barrier机制

    本想就此结束Raid1的专题博客,但是觉得Raid1中自己构建的一套barrier机制的设计非常巧妙,值得单独拿出来分析.它保证了同步流程和正常读写流程的并发性,也为设备冻结/解冻(freeze/un ...

随机推荐

  1. juce: 跨平台的C++用户界面库

    如果你用过QT和MFC,那你必然知道QT是基于C++的跨平台库,而MFC是微软针对widows平台推出来基础类库.且不论MFC的设计如何,从我个人和身边朋友的经历来看,MFC是一些非常难以理解的类的组 ...

  2. JY03-HTML/CSS-京东03

  3. C#数组的使用

    //计算数组中最大值,最小值,平均值和总和 //类中main最先执行 static void Main(string[] args) { //声明一个数组,数组长度一定固定就不能更改了 , , , , ...

  4. 软件测试 homework2

    1. 程序1:   for循环的i>0改为i>=0: 程序2:   for循环for (int i = 0; i < x.length; i++)改为for (int i = x.l ...

  5. oracle单行函数之字符函数

    Lower--转换为小写 upper--转换为大写 Initcap--首字母大写 concat--连接字符 substr--截取字符 length/length--获取字符串长度(字节长度) inst ...

  6. 利用Format函数格式化时间和日期

    在做机房收费系统的时候,因为需要使用到日期进行查询,所以在数据表中没有使用自动添加日期的功能,而是采用了自定义的格式插入.但由于事先没有对时间转换的格式进行统一,导致后面查询时出现的问题不断. 插入时 ...

  7. linux初识-02常用命令

    文件目录操作命令 ls 现实文件和目录列表 ls -l 列出文件的详细信息 ls -a 列出当前目录所有文件 包括隐藏的文件 mkdir 创建目录 -p 父目录不存在的情况下先生成父目录 cd 切换目 ...

  8. Ubuntu下MySQL配置为外网访问

    Ububtu安装MySQL后默认外网无法连接,但是很多时候我们想要在外网访问方便管理.在这里,简单叙述一下自己在配置过程中的操作,步骤如下: 以root身份登入mysql mysql -u root ...

  9. Nginx log

    ngx_http_log_module 模块通过指定的格式把请求写入日志.请求登陆到location处理结束的环境中.如果重定向发生在请求处理过程中,这或许与location原理不同. Example ...

  10. 总结一下apply和call的异同点

    call, apply都属于Function.prototype的一个方法,它是JavaScript引擎内在实现的,因为属于Function.prototype,所以每个Function对象实例,也就 ...