poj 2229 Sumsets(dp 或 数学)
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of . Here are the possible sets of numbers that sum to : ) ++++++
) +++++
) ++++
) +++
) +++
) ++ Help FJ count all possible representations for a given integer N ( <= N <= ,,).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last digits (in base representation).
Sample Input
Sample Output
Source
如果i为奇数,肯定有一个1,把f[i-1]的每一种情况加一个1就得到fi,所以f[i]=f[i-1]
如果i为偶数,如果有1,至少有两个,则f[i-2]的每一种情况加两个1,就得到i,如果没有1,则把分解式中的每一项除2,则得到f[i/2]
所以f[i]=f[i-2]+f[i/2]
由于只要输出最后9个数位,别忘记模1000000000
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<cmath>
using namespace std;
#define N 1010006
#define MOD 1000000000
int n;
int dp[N];
void init(){ dp[]=;
dp[]=;
for(int i=;i<N;i++){
if(i&){
dp[i]=dp[i-];
}
else{
dp[i]=dp[i-]+dp[i/];
dp[i]%=MOD;
}
}
}
int main()
{
init();
while(scanf("%d",&n)==){ printf("%d\n",dp[n]); }
return ;
}
poj 2229 Sumsets(dp 或 数学)的更多相关文章
- poj 2229 Sumsets DP
题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...
- poj -2229 Sumsets (dp)
http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...
- poj 2229 Sumsets(dp)
Sumsets Time Limit : 4000/2000ms (Java/Other) Memory Limit : 400000/200000K (Java/Other) Total Sub ...
- poj 2229 Sumsets(记录结果再利用的DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 将一个数N分解为2的幂之和共有几种分法? 题解: 定义dp[ i ]为数 i 的 ...
- POJ 2229 Sumsets【DP】
题意:把n拆分为2的幂相加的形式,问有多少种拆分方法. 分析:dp,任何dp一定要注意各个状态来源不能有重复情况.根据奇偶分两种情况,如果n是奇数则与n-1的情况相同.如果n是偶数则还可以分为两种情况 ...
- POJ 2229 Sumsets
Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 11892 Accepted: 4782 Descrip ...
- poj 2229 Sumsets 完全背包求方案总数
Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...
- POJ 2229 Sumsets(技巧题, 背包变形)
discuss 看到有人讲完全背包可以过, 假如我自己做的话, 也只能想到完全背包了 思路: 1. 当 n 为奇数时, f[n] = f[n-1], 因为只需在所有的序列前添加一个 1 即可, 所有的 ...
- POJ 2229 计数DP
dp[i]代表是数字i的最多组合数如果i是一个奇数,i的任意一个组合都包含1,所以dp[i] = dp[i-1] 如果i是一个偶数,分两种情况讨论,一种是序列中包含1,因此dp[i]=dp[i-1]一 ...
随机推荐
- JAVA并发实现五(生产者和消费者模式Condition方式实现)
package com.subject01; import java.util.PriorityQueue; import java.util.concurrent.locks.Condition; ...
- C# Excel导入、导出
本篇主要介绍C#的Excel导入.导出. 目录 1. 介绍:描述第三方类库NPOI以及Excel结构 2. Excel导入:介绍C#如何调用NPOI进行Excel导入,包含:流程图.NOPI以及C#代 ...
- 如何将XML转换成XSD(XML Schema)文件
将xml装换为xsd,先决条件是已经安装了Visual Stutio 1) 输入cmd在运行窗口 2) 将xsd的路径加入到path变量 set path=%path%;C:\Program File ...
- JSP简单练习-数组应用实例
<%@ page contentType="text/html; charset=gb2312" %> <html> <body> <% ...
- servlet下载,解决文件名中有中文下载路径出现乱码不能正常下载问题
方法很多种,我只试用了两种. 主页面JSP中引入下载功能所需的js文件.引入的时候设置编码格式例如 <script type="text/javascript" charse ...
- 解决 Google 重定向,体验 Google 本味
想要体验原汁原味的 Google(google.com),下面的方案是我用过的较方便的方案. 欢迎更正及补充 Chrome 扩展 Chrone 商店有一款禁止重定向的扩展 NoCountryRedir ...
- Android-图标
首先需要申明一点,系统图标并不存在于项目资源中,而是存在于设备中. 这就带来一个大问题,界面风格的控制权交到了不同的设备手中.这是我们不愿意看到的. 如何解决这个问题?有两种方法: 1.创建自己的图标 ...
- (一)Activity参数传递
1.主Activity,用于启动另一个Activity()public class MainActivity extends Activity { @Override protected void o ...
- Android与JS混编(js调用java)
项目中需要使用android与js的混编来开发app. 下面就介绍一下吧. 有时候我们需要用js调用native控件,要想实现这个功能,我们需要做的就只有三步: 1.允许webview执行js脚本 2 ...
- select radio readonly
首先 select radio 设置 disable的会无法提交数据. 这让我很头疼 而且 readonly 无效 后来发现.我把自己绕进去了..一般涉及 只读都是 不让用户修改 .而后台只更新 可 ...