Description

The center of a graph is the set of all vertices of minimum eccentricity, that is, the set of all vertices A where the greatest distance d(A,B) to other vertices B is minimal. Equivalently, it is the set of vertices with eccentricity equal to the graph's radius.
Thus vertices in the center (central points) minimize the maximal distance from other points in the graph.

                                                                                                             ------wikipedia

Now you are given a graph, tell me the vertices which are the graph center.

Input

There are multiple test cases.

The first line will contain a positive integer T (T ≤ 300) meaning the number of test cases.

For each test case, the first line contains the number of vertices N (3 ≤ N ≤ 100) and the number of edges M (N - 1 ≤ N * (N - 1) / 2). Each of the following N lines contains two vertices x (1 ≤ x ≤ N) and y (1 ≤ y ≤ N), meaning there is an edge between x and
y.

Output

The first line show contain the number of vertices which are the graph center. Then the next line should list them by increasing order, and every two adjacent number should be separated by a single space.

Sample Input

2
4 3
1 3
1 2
2 4
5 5
1 4
1 3
2 4
2 3
4 5

Sample Output

2
1 2
3
1 2 4

HINT

Source


题意:
给出n个点。m条边,求每一个点到其它点的距离,取最大的,然后在这全部最大的距离中选一个最小的值,最后输出这个值下有哪些点符合条件


思路:
n次最短路找出全部答案

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 200005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7;
const int L = 10005;
struct Edges
{
int x,y,w,next;
} e[L<<2]; int head[L],n,m;
int dis[L];
int vis[L];
int cnt[L],hash[L],ss[L];
int s[L];
void init()
{
memset(e,-1,sizeof(e));
memset(head,-1,sizeof(head));
}
void AddEdge(int x,int y,int w,int k)
{
e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k;
}
int relax(int u,int v,int c)
{
if(dis[v]>dis[u]+c)
{
dis[v] = dis[u]+c;
return 1;
}
return 0;
} int SPFA(int src)
{
int i;
memset(vis,0,sizeof(vis));
for(int i = 0; i<=n; i++)
dis[i] = INF;
dis[src] = 0;
queue<int> Q;
Q.push(src);
vis[src] = 1;
while(!Q.empty())
{
int u,v;
u = Q.front();
Q.pop();
vis[u] = 0;
for(i = head[u]; i!=-1; i=e[i].next)
{
v = e[i].y;
if(relax(u,v,e[i].w)==1 && !vis[v])
{
Q.push(v);
vis[v] = 1;
}
}
}
int maxn = -1;
for(i = 1; i<=n; i++)
maxn = max(maxn,dis[i]);
return maxn;
} int ans[L],tot,p[N];
int main()
{
int t,u,v,i,j,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
for(i = 0; i<2*m; i+=2)
{
scanf("%d%d",&u,&v);
AddEdge(u,v,1,i);
AddEdge(v,u,1,i+1);
}
int minn = INF;
for(i = 1; i<=n; i++)
{
p[i] = SPFA(i);
minn = min(p[i],minn);
}
tot = 0;
for(i = 1; i<=n; i++)
{
if(p[i]==minn)
ans[tot++] = i;
}
printf("%d\n",tot);
for(i = 0; i<tot; i++)
{
if(i)
printf(" ");
printf("%d",ans[i]);
}
printf("\n");
} return 0;
}

CSU1659: Graph Center(最短路)的更多相关文章

  1. csu - 1659 Graph Center(最短路)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1659 题意是找一个图的中心,图的中心定义是某一个点到其他点的最大距离最小,如果有多个排序输出. 注 ...

  2. CSU 1659: Graph Center(SPFA)

    1659: Graph Center Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 63  Solved: 25 [id=1659"> ...

  3. HDU 5876 Sparse Graph BFS 最短路

    Sparse Graph Problem Description   In graph theory, the complement of a graph G is a graph H on the ...

  4. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  5. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. HDU4725:The Shortest Path in Nya Graph(最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. hdu 4725 The Shortest Path in Nya Graph (最短路+建图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 4725 The Shortest Path in Nya Graph(最短路拆点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4725 题意:n个点,某个点属于某一层.共有n层.第i层的点到第i+1层的点和到第i-1层的点的代价均是 ...

  9. hdu4725 The Shortest Path in Nya Graph【最短路+建图】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4297574.html      ---by 墨染之樱花 题目链接:http://acm.hdu ...

随机推荐

  1. js动态新增组合Input标签

    var x = 1; function addlink() { var linkdiv = document.getElementById("add1_0"); if (linkd ...

  2. C#判断程序是否以管理员身份运行,否则以管理员身份重新打开

    /// <summary> /// 判断程序是否是以管理员身份运行. /// </summary> public static bool IsRunAsAdmin() { Wi ...

  3. Carthage&&cocopads 摘抄笔记

    Carthage 是 iOS/Mac 开发生态圈的一个包管理工具,与现在流行的 CocoaPods 不同,它是一个去中心化的解决方案.知道它已经有一段时间了,但是一直没有好好玩过,今天整合 Carth ...

  4. 【转载】经典10道c/c++语言经典笔试题(含全部所有参考答案)

    经典10道c/c++语言经典笔试题(含全部所有参考答案) 1. 下面这段代码的输出是多少(在32位机上). char *p; char *q[20]; char *m[20][20]; int (*n ...

  5. php explode 用法详解

    定义和用法explode() 函数把字符串分割为数组. 语法explode(separator,string,limit)参数 描述 separator 必需.规定在哪里分割字符串.string 必需 ...

  6. DEIVER_OBJECT结构参数

    typedef struct { PDEVICE_OBJECT DeviceObject; //指向驱动程序创建的设备对象 PUNICODE_STRING HardwareDatabase; //记录 ...

  7. ubuntu安装aircrack-ng/reaver/minidwep-gtk用来跑pin

    按照下面安装方法,可以在Ubuntu 13.04中启动 minidwep.Tested with Ubuntu 13.04 1. Dependencies    Code:    sudo apt-g ...

  8. 关于nginx架构探究(3)

    Nginx 模块综述 Nginx 所有的代码都是以模块的新式组织的,包括核心模块和功能模块.Nginx加载模块的时候不想Apache一样动态加载,它是直接被编译到二进制执行文件中,所以,如果想要加载新 ...

  9. Spark任务调度流程及调度策略分析

    Spark任务调度 TaskScheduler调度入口: (1)       CoarseGrainedSchedulerBackend 在启动时会创建DriverEndPoint. 而DriverE ...

  10. no-cache、max-age=0、must-revalidate区别

    之前深入搜索了多次,根据stackoverflow的回答进行一些总结(http://stackoverflow.com/questions/18148884/difference-between-no ...