本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个样例:

1. Markov Chain (马尔科夫链)

2. Random Walk(随机游走)

3. MCMC详细方法:

3.1 M-H法

3.2 Gibbs採样

PS:本篇blog为ese机器学习短期班參考资料(20140516课程),课上讲详述。

以下三节分别就前面几点简要介绍基本概念,并附上代码。这里的概念我会用最最naive的话去概括,详细内容就看我最下方推荐的链接吧(*^__^*)

0. MC(Monte Carlo)

生成指定分布的随机数的抽样。

1. Markov Chain (马尔科夫链)

如果 f(t) 是一个时间序列,Markov Chain是如果f(t+1)仅仅与f(t)有关的随机过程。

Implement in R:

#author: rachel @ ZJU
#email: zrqjennifer@gmail.com N = 10000
signal = vector(length = N)
signal[1] = 0
for (i in 2:N)
{
# random select one offset (from [-1,1]) to signal[i-1]
signal[i] = signal[i-1] + sample(c(-1,1),1)
} plot( signal,type = 'l',col = 'red')

2. Random Walk(随机游走)

如布朗运动,仅仅是上面Markov Chain的二维拓展版:

Implement in R:

#author: rachel @ ZJU
#email: zrqjennifer@gmail.com N = 100
x = vector(length = N)
y = vector(length = N)
x[1] = 0
y[1] = 0
for (i in 2:N)
{
x[i] = x[i-1] + rnorm(1)
y[i] = y[i-1] + rnorm(1)
} plot(x,y,type = 'l', col='red')

3. MCMC详细方法:

MCMC方法最早由Metropolis(1954)给出,后来Metropolis的算法由Hastings改进,合称为M-H算法。M-H算法是MCMC的基础方法。由M-H算法演化出了很多新的抽样方法,包含眼下在MCMC中最经常使用的Gibbs抽样也能够看做M-H算法的一个特例[2]。

概括起来,MCMC基于这种理论,在满足【平衡方程】(detailed balance equation)条件下,MCMC能够通过非常长的状态转移到达稳态。

【平衡方程】:
pi(x) * P(y|x) = pi(y) * P(x|y)
当中pi指分布,P指概率。这个平衡方程也就是表示条件概率(转化概率)与分布乘积的均衡.

3.1 M-H法

1. 构造目标分布,初始化x0

2. 在第n步,从q(y|x_n) 生成新状态y

3. 以一定概率((pi(y) * P(x_n|y)) / (pi(x) * P(y|x_n)))接受y <PS: 看看上面的平衡方程,这个概率表示什么呢?參考这里[1]>

implementation in R:

#author: rachel @ ZJU
#email: zrqjennifer@gmail.com N = 10000
x = vector(length = N)
x[1] = 0 # uniform variable: u
u = runif(N)
m_sd = 5
freedom = 5 for (i in 2:N)
{
y = rnorm(1,mean = x[i-1],sd = m_sd)
print(y)
y = rt(1,df = freedom) p_accept = dnorm(x[i-1],mean = y,sd = abs(2*y+1)) / dnorm(y, mean = x[i-1],sd = abs(2*x[i-1]+1))
#print (p_accept) if ((u[i] <= p_accept))
{
x[i] = y
print("accept")
}
else
{
x[i] = x[i-1]
print("reject")
}
} plot(x,type = 'l')
dev.new()
hist(x)

3.2 Gibbs採样

第n次,Draw from ,迭代採样结果接近真实p(\theta_1, \theta_2, ...)
也就是每一次都是固定其它參数,对一个參数进行採样。比方对于二元正态分布,其两个分量的一元条件分布仍满足正态分布:

那么在Gibbs採样中对其迭代採样的过程,实现例如以下:

#author: rachel @ ZJU
#email: zrqjennifer@gmail.com
#define Gauss Posterior Distribution p_ygivenx <- function(x,m1,m2,s1,s2)
{
return (rnorm(1,m2+rho*s2/s1*(x-m1),sqrt(1-rho^2)*s2 ))
} p_xgiveny <- function(y,m1,m2,s1,s2)
{
return (rnorm(1,m1+rho*s1/s2*(y-m2),sqrt(1-rho^2)*s1 ))
} N = 5000
K = 20 #iteration in each sampling
x_res = vector(length = N)
y_res = vector(length = N)
m1 = 10; m2 = -5; s1 = 5; s2 = 2
rho = 0.5
y = m2 for (i in 1:N)
{
x = p_xgiveny(y, m1,m2,s1,s2)
y = p_ygivenx(x, m1,m2,s1,s2)
# print(x)
x_res[i] = x;
y_res[i] = y;
} hist(x_res,freq = 1)
dev.new()
plot(x_res,y_res)
library(MASS)
valid_range = seq(from = N/2, to = N, by = 1)
MVN.kdensity <- kde2d(x_res[valid_range], y_res[valid_range], h = 10) #预计核密度
plot(x_res[valid_range], y_res[valid_range], col = "blue", xlab = "x", ylab = "y")
contour(MVN.kdensity, add = TRUE)#二元正态分布等高线图 #real distribution
# real = mvrnorm(N,c(m1,m2),diag(c(s1,s2)))
# dev.new()
# plot(real[1:N,1],real[1:N,2])

x分布图:

(x,y)分布图:

Reference:

1. http://www2.isye.gatech.edu/~brani/isyebayes/bank/handout10.pdf

2. http://site.douban.com/182577/widget/notes/10567181/note/292072927/

3. book:     http://statweb.stanford.edu/~owen/mc/

4. Classic: http://cis.temple.edu/~latecki/Courses/RobotFall07/PapersFall07/andrieu03introduction.pdf

欢迎參与讨论并关注本博客和微博Rachel____Zhang, 兴许内容继续更新哦~

MC, MCMC, Gibbs採样 原理&amp;实现(in R)的更多相关文章

  1. MC, MCMC, Gibbs采样 原理&实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...

  2. 关于iOS中用AudioFile相关API解码或播放AAC_HE_V2时仅仅能识别单声首22.05k採样率的问题

    关于iOS中用AudioFile相关API解码或播放AAC_HE_V2时仅仅能识别单声首22.05k採样率的问题 在官方AQPlayer Demo 和 aqofflinerender中.都用了Audi ...

  3. 【机器学习算法-python实现】採样算法的简单实现

    1.背景     採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道):     一.单纯随机抽样(simple random samp ...

  4. FFmpeg编程学习笔记二:音频重採样

    ffmpeg实现音频重採样的核心函数swr_convert功能很强大,但是ffmpeg文档对它的凝视太过简单.在应用中往往会出这样那样的问题,事实上在读取数据->重採样->编码数据的循环中 ...

  5. Cg入门21:Fragment shader - 2D纹理採样

    体纹理:是啥? tex2D 曾经仅仅能在Fragment程序中纹理採样 UV坐标系:事实上点为左下角,范围为[0,1].U为x轴,V为y轴 watermark/2/text/aHR0cDovL2Jsb ...

  6. HDU-4190-Number Sequence-容斥原理+多重集和的r组合

    HDU-4190-Number Sequence-容斥原理+多重集和的r组合 [Problem Description] 给你\(n\)个数\(b_i\),问有多少个长度为\(n\)序列\(a_i\) ...

  7. MCMC,GIBBS SAMPLING简单摘要

    本文后面很多内容都是参考博客:http://www.cnblogs.com/xbinworld/p/4266146.html.本文主要用作学习交流备忘用. 1)简述: 随机模拟也可以叫做蒙特卡洛模拟, ...

  8. MCMC&Gibbs sampling

    Note of Markov Chain Monte Carlo and Gibbs Sampling :  http://pan.baidu.com/s/1jHpWY1o 序:A major lim ...

  9. 关于 视频同步vsync 信号在不同一时候钟域採样问题

    今天调试 视频 4k(3840 x 1920)的vsync信号(时钟为 297Mhz) 进入 170Mhz 的时钟域, 发现输出来的信号信号抖动特别厉害.后来才发现这是不同一时候钟域 造成的影响. 快 ...

随机推荐

  1. 单线程与多线程的简单示例(以Windows服务发短信为示例)

    单线程示例: public delegate void SM(); SM sm = new SM(() =>    {                    while (true)       ...

  2. c - 统计字符串"字母,空格,数字,其他字符"的个数和行数.

    #include <stdio.h> #include <ctype.h> using namespace std; /* 题目:输入一行字符,分别统计出其中英文字母.空格.数 ...

  3. 重置MySQL的root用户密码(Window)

    1.首先要停止Mysql服务.打开CMD,键入命令 net stop mysql 默认的mysql服务名就是mysql,如果你修改过服务名,请自行对照修改命令. 2.在CMD中进入mysql的bin目 ...

  4. MySQL 列子查询及 IN、ANY、SOME 和 ALL 操作符的使用

    列子查询是指子查询返回的结果集是 N 行一列,该结果通常来自对表的某个字段查询返回. 一个列子查询的例子如下: SELECT * FROM article WHERE uid IN(SELECT ui ...

  5. mysql文件导入到数据库load data infile into table 的使用例子

    load data infile "C:/Users/Administrator/Desktop/1.txt"into table 要一个已经存的表名 字段默认用制表符隔开 文件 ...

  6. Covariant Returen Types(协变返回类型)

    基类virtual func返回类型为某个类(class Super)的ptr或ref,子类重写的virtual func返回类型可改为该类子类(class Sub : public Super)的p ...

  7. 你好,C++(29)脚踏两只船的函数不是好函数 5.4 函数设计的基本规则

    5.4  函数设计的基本规则 函数是C++程序的基本功能单元,就像一块块砖头可以有规则地垒成一座房子,而一个个函数也可以有规则地组织成一个程序.我们在大量使用他人设计好的函数的同时,也在设计大量的函数 ...

  8. ubuntu自动挂载windows分区和开机自动启动wallproxy

    1. 自动挂载windows分区 ubuntu默认是要点一下相应的盘符才会挂载windows分区的. 今天发现了ubuntu下最简单的自动挂载windows分区的办法.... :) 参考如下方法:ht ...

  9. $this->success('注册成功!');

    使用在控制器中,不是使用再模板中的

  10. HTML5 canvas中的路径方法

    路径方法 fill()                                填充当前绘图(路径) stroke()                        绘制已定义的路径 begin ...