题意:

给N×M的棋盘。每天随机找一个没放过棋子的格子放一个棋子

问使得每一个每列都有棋子的天数期望

思路:

dp[i][j][k] 代表放了i个棋子占了j行k列 到达目标状态的期望

然后从 dp[n*m][n][m] 往后递推就好了。

由于知道了有i个棋子 比如一个状态dp[6][3][3]

x x x o o o

x o o o o o

x o x o o o

o o o o o o

对于 dp[i+1][3][3] 事实上就是3*3剩下的空再放一个,概率就是(j*k-i) / (n*m-i)

对于 dp[i+1][4][3] 就是剩下的行乘上现有的列找一个放,概率就是  ((n-j)*k)/(n*m-i)

对于 dp[i+1][3][4]就是剩下的列乘上现有的行找一个放 。概率就是 ((m-k)*j)/(n*m-i)

最后 dp[i+1][4][4] 就是剩下的行乘上剩下的列找一个放 ,概率就是(n-j)*(m-k))/(n*m-i)

然后期望是一天加上就好了。

注意一下几个非法的情况就好了

然后能够用滚动数组优化空间。

代码:

#include"cstdlib"
#include"cstdio"
#include"cstring"
#include"cmath"
#include"queue"
#include"algorithm"
#include"iostream"
#include"map"
#include"string"
using namespace std;
double dp[2][55][55];
int main()
{
int t;
cin>>t;
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
int i,j,k;
memset(dp,0,sizeof(dp));
for(i=n*m;i>=0;i--)
{
for(j=n;j>=0;j--)
{
for(k=m;k>=0;k--)
{
if(j==n&&k==m) continue; //终于状态 期望是0
if(i>j*k) continue; //棋子多了 非法
double tep=0; //以下的注意不能等于0
if(j>0&&k>0) tep+=(dp[1-(i+1)%2][j][k]+1)*((j*k-i)/(n*m-i*1.0));
if(k>0) tep+=(dp[1-(i+1)%2][j+1][k]+1)*(((n-j)*k)/(n*m-i*1.0));
if(j>0) tep+=(dp[1-(i+1)%2][j][k+1]+1)*(((m-k)*j)/(n*m-i*1.0));
tep+=(dp[1-(i+1)%2][j+1][k+1]+1)*((n-j)*(m-k))/(n*m-i*1.0);
dp[1-(i)%2][j][k]=tep;
}
}
}
printf("%.12f\n",dp[1-(0)%2][0][0]);
}
return 0;
}

[概率dp] ZOJ 3822 Domination的更多相关文章

  1. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  2. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  4. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  5. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  6. zoj 3822 Domination(2014牡丹江区域赛D称号)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. ZOJ 3822 Domination (三维概率DP)

    E - Domination Time Limit:8000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Submi ...

  8. zoj 3822 Domination(2014牡丹江区域赛D题) (概率dp)

    3799567 2014-10-14 10:13:59                                                                     Acce ...

  9. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

随机推荐

  1. Hibernate Dialect must be explicitly set

    在偶然一次运行hibernate测试类的时候,出现如下错误,Exception in thread "main" org.hibernate.HibernateException: ...

  2. Windows Azure HDInsight 现已正式发布!

    今天,我们宣布正式发布 Windows Azure HDInsight 服务.HDInsight 是 Microsoft 提供的基于 Hadoop 的服务,为云提供 100% 的 Apache Had ...

  3. BZOJ 3402: [Usaco2009 Open]Hide and Seek 捉迷藏

    题目 3402: [Usaco2009 Open]Hide and Seek 捉迷藏 Time Limit: 3 Sec  Memory Limit: 128 MB Description     贝 ...

  4. JAVA中SSH面试问题

    1.阐述struts2的执行流程. Struts 2框架本身大致可以分为3个部分:核心控制器FilterDispatcher.业务控制器Action和用户实现的企业业务逻辑组件.核心控制器Filter ...

  5. B - 楼下水题(扩展欧几里德)

    B - 楼下水题 Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. 前端笔试面试中的常用知识点总结(CSS)

    1.CSS选择器的优先级!important  > 内联 > id选择器 > 类选择器 > 标签选择器多个类选择器叠加(256)之后的优先级大于一个id选择器!importan ...

  7. aop切入点表达式

    1.切入点表达式:对指定的方法进行拦截,并且生成代理表达式. 2.拦截所有public方法 <aop:pointcut expression="execution(public * * ...

  8. git和GItHub的区别

    git是一个版本控制工具.github是一个用git做版本控制的项目托管平台. 这有点类似于Wordpress和Wordpress.com的关系,前者是一个任何人都可以用的免费博客系统,后者是一个平台 ...

  9. BZOJ 1660: [Usaco2006 Nov]Bad Hair Day 乱发节( 单调栈 )

    维护一个h严格递减的栈 , 出栈时计算一下就好了.. ------------------------------------------------------------------------- ...

  10. Linux命令压缩与解压缩

    zip格式的文件:zip和unzip zip 命令: # zip test.zip test.txt 它会将 test.txt 文件压缩为 test.zip ,当然也可以指定压缩包的目录,例如 /ro ...