在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex Network)。AOV网中的弧表示活动之间存在的某种制约关系,AOV网中不能存在回路,让某个活动的开始要以自己完成作为先决条件,显然是不可以的。

设G= { V, E }是一个具有n个顶点的有向图,V中的顶点序列v1, v2, ...,vn,满足若从顶点vi到vj有一条路径,则在顶点序列中顶点vi必在vj之前,则我们称这样的顶点序列为一个拓扑排序。

所谓拓扑排序,其实就是对一个有向图构造拓扑序列的过程。构造时会有两个结果,如果此网的全部顶点都被输出,则说明它是不存在(回路)的AOV网;如果输出顶点少了,哪怕是少了一个,也说明这个网存在环路,不是AOV网。

对AOV网进行拓扑排序的基本思路是:从AOV网中选择一个入度为0的顶点输出,然后删去此顶点,并删除以此顶点为尾的弧,继续重复此步骤,直到输出全部顶点或者AOV网中不存在入度为0的顶点为止。

由于在拓扑排序的过程中,需要删除顶点,显然用邻接表的结构会更加方便,考虑到算法中始终要查找入度为0的顶点,我们可以在原来顶点表结点结构中,增加一个入度域in, 即入度的数字,上面所提到的删除以某个顶点为尾的弧的操作也是通过将某顶点的邻接点的in减去1,表示删除了中间连接的弧。

对于图7-8-2的第一幅图AOV网,可以得到如第二幅图的邻接表数据结构。

另外,在算法中,还需要辅助的数据结构--栈,用来存储处理过程中入度为0的点,目的是为了避免每次查找时都要去遍历顶点表找有没有入度为0的顶点。

下面来看整体代码(改编自《大话数据结构》)

 C++ Code 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
 
#include<iostream>
using namespace std;

#define MAXEDGE 20
#define MAXVEX 14
#define INFINITY 65535

/* 邻接矩阵结构 */
typedef struct
{
    int vexs[MAXVEX];
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
} MGraph;

/* 邻接表结构****************** */
typedef struct EdgeNode /* 边表结点  */
{
    int adjvex;    /* 邻接点域,存储该顶点对应的下标 */
    int weight;     /* 用于存储权值,对于非网图可以不需要 */
    struct EdgeNode *next; /* 链域,指向下一个邻接点 */
} EdgeNode;

typedef struct VertexNode /* 顶点表结点 */
{
    int in; /* 顶点入度 */
    int data; /* 顶点域,存储顶点信息 */
    EdgeNode *firstedge;/* 边表头指针 */
} VertexNode, AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    int numVertexes, numEdges; /* 图中当前顶点数和边数 */
} graphAdjList, *GraphAdjList;
/* **************************** */

void CreateMGraph(MGraph *G)/* 构建图 */
{
    int i, j;

/* printf("请输入边数和顶点数:"); */
    G->numEdges = MAXEDGE;
    G->numVertexes = MAXVEX;

for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        G->vexs[i] = i;
    }

for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            G->arc[i][j] = 0;
        }
    }

G->arc[0][4] = 1;
    G->arc[0][5] = 1;
    G->arc[0][11] = 1;
    G->arc[1][2] = 1;
    G->arc[1][4] = 1;
    G->arc[1][8] = 1;
    G->arc[2][5] = 1;
    G->arc[2][6] = 1;
    G->arc[2][9] = 1;
    G->arc[3][2] = 1;
    G->arc[3][13] = 1;
    G->arc[4][7] = 1;
    G->arc[5][8] = 1;
    G->arc[5][12] = 1;
    G->arc[6][5] = 1;
    G->arc[8][7] = 1;
    G->arc[9][10] = 1;
    G->arc[9][11] = 1;
    G->arc[10][13] = 1;
    G->arc[12][9] = 1;

}

/* 利用邻接矩阵构建邻接表 */
void CreateALGraph(MGraph G, GraphAdjList *GL)
{
    int i, j;
    EdgeNode *e;

*GL = (GraphAdjList)malloc(sizeof(graphAdjList));

(*GL)->numVertexes = G.numVertexes;
    (*GL)->numEdges = G.numEdges;
    for(i = 0; i < G.numVertexes; i++) /* 读入顶点信息,建立顶点表 */
    {
        (*GL)->adjList[i].in = 0;
        (*GL)->adjList[i].data = G.vexs[i];
        (*GL)->adjList[i].firstedge = NULL;     /* 将边表置为空表 */
    }

for(i = 0; i < G.numVertexes; i++) /* 建立边表 */
    {
        for(j = 0; j < G.numVertexes; j++)
        {
            if (G.arc[i][j] == 1)
            {
                e = (EdgeNode *)malloc(sizeof(EdgeNode));
                e->adjvex = j;                  /* 邻接序号为j  */
                e->next = (*GL)->adjList[i].firstedge;  /* 将当前顶点上的指向的结点指针赋值给e */
                (*GL)->adjList[i].firstedge = e;        /* 将当前顶点的指针指向e  */
                (*GL)->adjList[j].in++; /* 注意这里是j */

}
        }
    }

}
/* 拓扑排序,若GL无回路,则输出拓扑排序序列并返回1,若有回路返回0。 */
bool TopologicalSort(GraphAdjList GL)
{
    EdgeNode *pe;
    int i, k, gettop;
    int top = 0;/* 用于栈指针下标  */
    int count = 0;/* 用于统计输出顶点的个数  */
    /* 建栈将入度为0的顶点入栈  */
    int *stack = (int *)malloc(sizeof(GL->numVertexes * sizeof(int)));

for (i = 0; i < GL->numVertexes; i++)
        if (0 == GL->adjList[i].in)
            stack[++top] = i;/* 将入度为0的顶点入栈 */

while (top != 0)
    {
        gettop = stack[top--];
        cout << GL->adjList[gettop].data << " -> ";
        count++;  /* 输出i号顶点,并计数 */
        for (pe = GL->adjList[gettop].firstedge; pe; pe = pe->next)
        {
            k = pe->adjvex;
            /* 将i号顶点的邻接点的入度减1,如果减1后为0,则入栈 */
            if (!--GL->adjList[k].in)
                stack[++top] = k;
        }
    }
    cout << endl;
    if (count < GL->numVertexes)
        return false;
    else
        return true;
}

int main(void)
{
    MGraph MG;
    GraphAdjList GL;
    CreateMGraph(&MG);
    CreateALGraph(MG, &GL);
    if (TopologicalSort(GL))
        cout << "It's a AOV network" << endl;
    else
        cout << "It's not a AOV network" << endl;

return 0;
}

输出为:

算法的代码相比较最小生成树和最短路径是比较好理解的,注释也比较清楚,这里就不费口舌了,如下图7-8-4是将结点v3被删除的模拟图,其他依次

被删除的结点情形类似,可类推。需要注意的是上面有个通过邻接矩阵(事先确定)来生成邻接表的函数CreateALGraph,因为是有向图,所以针对一

条边只插入一次EdgeNode, 且初始化in时注意是入度,即 (*GL)->adjList[j].in++;  /* 注意这里是j */  另外创建邻接矩阵的函数CreateMGraph中因为是有

向图,故矩阵并不是对称的,需要注意。另外也不是网图,故只用1表示弧存在,0表示弧不存在。

当然程序输出的结果并不是唯一的一种拓扑排序方案。

AOV网与拓扑排序的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 算法与数据结构(七) AOV网的拓扑排序(Swift版)

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  3. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  4. AOV图与拓扑排序&AOE图与关键路径

    AOV网:所有的工程或者某种流程可以分为若干个小的工程或阶段,这些小的工程或阶段就称为活动.若以图中的顶点来表示活动,有向边表示活动之间的优先关系,则这样活动在顶点上的有向图称为AOV网. 拓扑排序算 ...

  5. 图的拓扑排序,AOV,完整实现,C++描述

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  6. 算法与数据结构(八) AOV网的关键路径

    上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...

  7. C++编程练习(12)----“有向图的拓扑排序“

    设G={V,E}是一个具有 n 个顶点的有向图,V中的顶点序列 v1,v2,......,vn,满足若从顶点 vi 到 vj 有一条路径,则在顶点序列中顶点 vi 必在顶点 vj 之前.则称这样的顶点 ...

  8. 算法与数据结构(八) AOV网的关键路径(Swift版)

    上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...

  9. 拓扑排序---AOV图

    对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中全部顶点排成一个线性序列, 使得图中随意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出如 ...

随机推荐

  1. 一个执行Dos命令的窗口程序,与各位分享。

    一个执行Dos命令的窗口程序,与各位分享.   效果图:     具体实现在代码中有详细的注释,请看代码.   实现执行CMD命令的核心代码(Cmd.cs):   [csharp]   using S ...

  2. Scala中_(下划线)的常见用法

    Scala中_(下划线)的常见用法 地址:https://www.jianshu.com/p/0497583ec538

  3. [Node.js] Level 2 new. Event

    Chat Emitter We're going to create a custom chat EventEmitter. Create a new EventEmitter object and ...

  4. 如何用代码组织多个Storyboard(故事板)

    1. 新建一个Storyboard取名为OtherStoryboard.storyboard 2. 使用下面代码加载 UIStoryboard *newStoryboard = [UIStoryboa ...

  5. VMware12 中安装MS-DOS 7.10

    按一下步骤进行安装: 选择虚拟机,然后如下图选择“ 编辑虚拟机设置 ”. 弹出的编辑框中,选择“CD/DVD”中的“使用ISO镜像文件”,然后选择“浏览”,打开MS-DOS7.10.iso的ISO镜像 ...

  6. IOS 将公历日期转换为中国农历

    代码方法: //日期阳历转换为农历: - (NSString *)convertDateToNongLi:(NSString *)aStrDate { NSDate *dateTemp = nil; ...

  7. Struts2(六)result

    一.result简述 result:输出结果:第个Action返回一个字符串,Struts2根据这个值来决定响应结果 name属性:result的逻辑名.和Actin里的返回值匹配,默认"s ...

  8. The Web Sessions List

    The Web Sessions list contains the list of HTTP Requests that are sent by your computer. You can res ...

  9. java如何将毫秒数转为相应的年月日格式

    public static void main(String[] args) { Date date = new Date(); Long time = date.getTime(); System. ...

  10. MVC日期和其它字符串格式化

    -- (月份位置不是03) string.Format("{0:D}",System.DateTime.Now) 结果为:2009年3月20日 : :: -- : -- :: st ...