http://jiakaizhang.com/project/real-time-3d-reconstruction/

Real-time 3D Reconstruction using Kinect

Real-time 3D Reconstruction

Jiakai Zhang, Prof. Davi Geiger
New York University
July 2012 – September 2012

In order to reconstruct an indoor scene using a moving Kinect camera, I first needed toalign point clouds of different frames, then integrate them and rebuild the surface, and finally realize the real-time reconstruction using CUDA language.

More details are in my report.

Here is the pipeline:

Figure 1 pipeline

1. Input raw data – depth image

The figure 2 shows the raw data from Kinect which is RGB Image and Depth Image.

Figure 2 Raw Data from Kinect

The Kinect Camera has 30 FPS. The resolution for the depth image is 640 by 480.

2. Noise reduction – bilateral filtering

The raw depth data from the Kinect is pretty noisy. It’s hard to use for camera tracking. If I apply the Phong-shading to represent the normal map, the noisy normal vectors make the objects irregularity.

Figure 3 Raw Normal Map

Thus we implement a bilateral filtering which is used to smooth the depth image and remove noise while still preserving edges. The details of this algorithm shows on this Web Page. The figure 4 shows the result by choosing different parameters of filtering

 

Figure 4 bilateral filtering process results

3. Camera Pose Estimation – ICP

The input of ICP is the consecutive cloud points and normal vectors in different frames. The output is the 6DOF transformation matrix T which indicates the pose of camera. The figure 5 shows the results before and after applying ICP. The two images are obtained from two different viewports but the same scene.

Figure 5 ICP Result

6. Update reconstruction – TSDF and Ray Casting

Once I know the position and rotation relations between frames, I can use TSDF to merge all frame depth map into one. Here I use truncated signed distance function (TSDF) to save merged data. TSDF actually a 3d tensor or I call it a cube, which represents the space I are measuring. The value of each volume in the cube is the distance to closest surface. And this distance is signed and truncated. If the volume is behind the surface in the view of camera, then I set distance a negative value. If the distance between volume and surface is too long, then I set the distance equal to 1 or -1. I use truncation to efficiently get parallel surfaces.

After updating the TSDF cube, I choose the particular camera position to cast ray to the volume of the TSDF cube. If we find the sign of the TSDF value changes, it means we find a point on the surface. And we calculate the normal vector by calculating the gradient of TSDF at this point. The figure 6 shows the result of ray casting.

Figure 6 Ray Casting

7. Reference

[1] KinectFusion: Real-Time Dense Surface Mapping and Tracking. Microsoft Research
[2] B. Curless and M. Levoy. A volumetric method for building complex models from range images.
[3] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with CUDA. In H. Nguyen, editor, GPU Gems 3, chapter 39, pages 851–876.
[4] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the ICCV, 1998.
[5] C. Rasch and T. Satzger. Remarks on the O(N) implementation of the fast marching method.
[6] Y. Chen and G. Medioni. Object modeling by registration of multiple range images. Image and Vision Computing (IVC), 10(3):145–155,1992
[7] Kok-Lim Low Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration

Real-time 3D Reconstruction using Kinect的更多相关文章

  1. Camera Calibration and 3D Reconstruction

    3D RECONSTRUCTION WITH OPENCV AND POINT CLOUD LIBRARY http://stackoverflow.com/questions/19205557/op ...

  2. Multi-View 3D Reconstruction with Geometry and Shading——Part-2

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 我们的主要目标是只利用图像中的信息而没有额外的限制或假设来得 ...

  3. Multi-View 3D Reconstruction with Geometry and Shading——Part-1

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 计算机视觉的主要任务就是利用图像信息能智能理解周围的世界. ...

  4. [SLAM] 02. Some basic algorithms of 3D reconstruction

    链接:http://www.zhihu.com/question/29885222/answer/100043031 三维重建 3D reconstruction的一个算法思路介绍,帮助理解 首先一切 ...

  5. [SLAM] 02 Some algorithms of 3D reconstruction

    链接:http://www.zhihu.com/question/29885222/answer/100043031 首先一切建立在相机模型 x = kPX 上   x,X分别代表图片和空间中的二维三 ...

  6. 能否通过六面照片构建3D模型?比如人脸,全身的多角度照片,生成3D模型。?

    https://www.zhihu.com/question/36412840 9023 ​添加评论 ​分享 ​邀请回答​举报 ​ 收起 已关注写回答   9 个回答 默认排序​ 叛逆者 计算机图形学 ...

  7. 用基于WebGL的BabylonJS来共享你的3D扫描模型

    转自:http://www.geekfan.net/6578/ 用基于WebGL的BabylonJS来共享你的3D扫描模型 杰克祥子 2014 年 2 月 26 日 0 条评论 标签:3D扫描 , B ...

  8. 3D重建算法原理

    3D重建算法原理 三维重建(3D Reconstruction)技术一直是计算机图形学和计算机视觉领域的一个热点课题.早期的三维重建技术通常以二维图像作为输入,重建出场景中的三维模型.但是,受限于输入 ...

  9. 2020国防科大综述:3D点云深度学习——综述(3D点云分割部分)

    目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀 ...

随机推荐

  1. [ 转载 ] Mysql 远程连接+开放80和3306端口 常用配置

    直接上方法: 首先配置CentOS下防火墙iptables规则: # vim /etc/sysconfig/iptables 向其中加入下列规则: -A INPUT -m state –state N ...

  2. hdu 1514 记忆化搜索

    题意是给4堆(堆的高度小于等于40)有颜色(颜色的种类小于等于20)的物品,你有一个篮子最多能装5件物品,每次从这4堆物品里面任取一件物品放进篮子里,但是取每堆物品时,必须先取上面的物品,才能取下面的 ...

  3. Vue的过渡或动画

    一.过渡的类名 在进入/离开的过渡中,共有6种class进行切换,分别是v-enter,v-enter-active,v-enter-to,v-leave,v-leave-active,v-leave ...

  4. NOIP 算法模板

    Hash: #include <iostream> #include <cstdio> #include <cstdlib> #include <algori ...

  5. Codeforces Round #256 (Div. 2) E Divisors

    E. Divisors Bizon the Champion isn't just friendly, he also is a rigorous coder. Let's define functi ...

  6. JVM垃圾回收(GC)流程

    /* 首先介绍一下JVM中堆内存的组成: JVM堆内存主要由三部分组成: (1)新生代: 伊甸园区,存活区,伸缩区 (2)老年代: 老年区,伸缩区 (3)元空间(永久代): 元空间,伸缩区 注意:JD ...

  7. python 编程语言基础技术框架

    python标识符身份 id方法查看唯一标示符,内存地址 >>> a = "str" >>> b = 2 >>> id(a) ...

  8. java_线程的几种状态

    java thread的运行周期中, 有几种状态, 在 java.lang.Thread.State 中有详细定义和说明: NEW 状态是指线程刚创建, 尚未启动 RUNNABLE 状态是线程正在正常 ...

  9. ISO 7816-4: Interindustry Commands for Interchange

    5. Basic Organizations 5.1 Data structures5.2 Security architecture of the card 5.3 APDU message str ...

  10. MVC扩展控制器工厂,通过实现IControllerFactory,根据action名称生成不同的Controller

    关于控制器工厂的扩展,要么通过实现IControllerFactory接口,要么通过继承DefaultControllerFactory.本篇中,我想体验的是: 1.当请求经过路由,controlle ...