CF980E The Number Games

题意翻译

Panel 国将举办名为数字游戏的年度表演。每个省派出一名选手。

国家有 n 个编号从 1 到 n 的省,每个省刚好有一条路径将其与其他省相连。第 i 个省出来的代表有 2i 名粉丝。

今年,主席打算削减开支,他想要踢掉 k 个选手。但是,被踢掉的选手的省将很 angry 并且不会让别的任何人从这个省经过。

主席想确保所有剩下选手的省都互相可达,他也希望最大化参与表演的选手的粉丝数。

主席该踢掉哪些选手呢?

输入格式

输入n,k 。( k<n≤106 )

下来是 n−1 行,一行两个数,代表一条道路的起终点。

输出格式

升序输出要踢掉的选手编号。

感谢@poorpool 提供的翻译

题目描述

The nation of Panel holds an annual show called The Number Games, where each district in the nation will be represented by one contestant.

The nation has nn districts numbered from 11 to nn , each district has exactly one path connecting it to every other district. The number of fans of a contestant from district ii is equal to 2^i2i .

This year, the president decided to reduce the costs. He wants to remove kk contestants from the games. However, the districts of the removed contestants will be furious and will not allow anyone to cross through their districts.

The president wants to ensure that all remaining contestants are from districts that can be reached from one another. He also wishes to maximize the total number of fans of the participating contestants.

Which contestants should the president remove?

输入输出格式

输入格式:

The first line of input contains two integers n and k ( 1≤k<n≤106 ) — the number of districts in Panel, and the number of contestants the president wishes to remove, respectively.

The next n−1 lines each contains two integers aa and b ( 1≤a,b≤n , a≠b ), that describe a road that connects two different districts a and b in the nation. It is guaranteed that there is exactly one path between every two districts.

输出格式:

Print k space-separated integers: the numbers of the districts of which the contestants should be removed, in increasing order of district number.

输入输出样例

输入样例#1: 复制

6 3
2 1
2 6
4 2
5 6
2 3
输出样例#1: 复制

1 3 4
输入样例#2: 复制

8 4
2 6
2 7
7 8
1 2
3 1
2 4
7 5
输出样例#2: 复制

1 3 4 5

说明

In the first sample, the maximum possible total number of fans is 2^2 + 2^5 + 2^6 = 100 . We can achieve it by removing the contestants of the districts 1, 3, and 4.


Solution

哭,写完才发现为什么别人的代码那么短QAQ

暴拍了个树剖+线段树修改QAQ

思路也就是贪心了,把$n$定为根节点,从大往小选,要选它选意味着这个点到根节点的点全都要选,所以每次计算这条路上可以选的数量,能选就选,然后修改线段树,最后查询线段树上没有被修改的就行了。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; int n, k; struct Node {
int u, v, nex;
Node(int u = , int v = , int nex = ) :
u(u), v(v), nex(nex) { }
} Edge[]; int h[], stot;
void add(int u, int v) {
Edge[++stot] = Node(u, v, h[u]);
h[u] = stot;
} int fa[], siz[], son[];
void dfs1(int u, int f) {
fa[u] = f; siz[u] = ;
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
if(v == f) continue;
dfs1(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
} int top[], in[], idc;
void dfs2(int u, int t) {
top[u] = t; in[u] = ++idc;
if(son[u]) dfs2(son[u], t);
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
if(v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
} int TR[], tag[];
void update(int nd) {
TR[nd] = TR[nd << ] + TR[nd << | ];
} void push_down(int nd, int l, int r) {
if(~tag[nd]) {
int mid = (l + r) >> ;
TR[nd << ] = ;
TR[nd << | ] = ;
tag[nd << ] = ; tag[nd << | ] = ;
tag[nd] = -;
}
} void build(int nd, int l, int r) {
tag[nd] = -;
if(l == r) {
TR[nd] = ;
return ;
}
int mid = (l + r) >> ;
build(nd << , l, mid);
build(nd << | , mid + , r);
update(nd);
} int query(int nd, int l, int r, int L, int R) {
if(l >= L && r <= R) return TR[nd];
push_down(nd, l, r);
int ans = ; int mid = (l + r) >> ;
if(L <= mid) ans += query(nd << , l, mid, L, R);
if(R > mid) ans += query(nd << | , mid + , r, L, R);
return ans;
} void modify(int nd, int l, int r, int L, int R) {
if(l >= L && r <= R) {
TR[nd] = ;
tag[nd] = ;
return ;
}
push_down(nd, l, r);
int mid = (l + r) >> ;
if(L <= mid) modify(nd << , l, mid, L, R);
if(R > mid) modify(nd << | , mid + , r, L, R);
update(nd);
} int query(int u) {
int ans = ;
while(top[u] != ) {
ans += query(, , n, in[top[u]], in[u]);
u = fa[top[u]];
}
ans += query(, , n, in[n], in[u]);
return ans;
} void modify(int u) {
while(top[u] != ) {
modify(, , n, in[top[u]], in[u]);
u = fa[top[u]];
}
modify(, , n, in[n], in[u]);
} int use[];
int main() {
scanf("%d%d", &n, &k);
memset(use, , sizeof(use));
for(int i = ; i < n; i ++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v); add(v, u);
}
dfs1(n, ); dfs2(n, );
build(, , n);
int tot = n - k;
for(int i = n; i >= && tot; i --) {
int tmp = query(i);
if(tmp <= tot) {
tot -= tmp;
modify(i);
}
}
for(int i = ; i <= n; i ++)
if(query(, , n, in[i], in[i])) printf("%d ", i);
return ;
}

CF980E The Number Games【树链剖分/线段树】的更多相关文章

  1. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  2. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  3. Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  4. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  5. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  6. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  7. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  8. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  9. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  10. HDU 2460 Network(双连通+树链剖分+线段树)

    HDU 2460 Network 题目链接 题意:给定一个无向图,问每次增加一条边,问个图中还剩多少桥 思路:先双连通缩点,然后形成一棵树,每次增加一条边,相当于询问这两点路径上有多少条边,这个用树链 ...

随机推荐

  1. oracle主键约束、唯一键约束和唯一索引的区别

    (1)主键约束和唯一键约束均会隐式创建同名的唯一索引,当主键约束或者唯一键约束失效时,隐式创建的唯一索引会被删除: (2)主键约束要求列值非空,而唯一键约束和唯一索引不要求列值非空: (3)相同字段序 ...

  2. Linux学习笔记-文件处理和权限命令

    目录 文件处理命令 touch cat tac more less head tail 链接命令 ln 权限命令 chmod 权限管理命令 chown chgrp umask 文件处理命令 touch ...

  3. iOS开发之删除Provisioning Profiles方法

    1.在finder下打开go -> go to folder输入: ~/Library/MobileDevice/Provisioning Profiles 2.查看上面的列表,按照时间顺序删除 ...

  4. 最长子串(Leetcode-3 Longest Substring Without Repeating Characters)

    Question: Given a string, find the length of the longest substring without repeating characters. Exa ...

  5. Python2和Python3同时安装到Windows

    上月已经把Python2安装好了,安装目录和及其下的Scripts也在安装时添加到了环境变量PATH中,可以使用python命令执行程序. 安装包:python-2.7.14.amd64.msi(没有 ...

  6. HTML网页自动跳转

    <meta http-equiv="refresh" content="3;URL=res.html">

  7. celery在Django中的集成使用

    继上回安装和使用Redis之后,看看如何在Django中使用Celery.Celery是Python开发分布式任务列队的处理库.可以异步分布式地异步处理任务,也可定时执行任务等等.通常我们可以在Dja ...

  8. Django实战(13):在session中保存购物车

    现在,我们有了一个产品目录界面,用户如果看到满意的产品,就可以将其放入购物车.下面就让我们来实现购物车的功能. 首先要做一下简单的分析和设计.购物车应该显示一系列产品的清单,其中列出了买方选中的产品. ...

  9. PHP验证时有用的几段代码

    1.htmlspecialchars() htmlspecialchars() 函数把一些预定义的字符转换为 HTML 实体.预定义的字符是: & (和号) 成为 & " ( ...

  10. 在控制台连接oracle

    Microsoft Windows [版本 6.1.7601]版权所有 (c) 2009 Microsoft Corporation.保留所有权利. C:\Users\lijt>sqlplus ...