HDU 5682 zxa and leaf 二分 树形dp
zxa and leaf
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5682
Description
zxa have an unrooted tree with n nodes, including (n−1) undirected edges, whose nodes are numbered from 1 to n. The degree of each node is defined as the number of the edges connected to it, and each node whose degree is 1 is defined as the leaf node of the tree.
zxa wanna set each node's beautiful level, which must be a positive integer. His unrooted tree has m(1≤m≤n) leaf nodes, k(1≤k≤m) leaf nodes of which have already been setted their beautiful levels, so that zxa only needs to set the other nodes' beautiful levels.
zxa is interested to know, assuming that the ugly level of each edge is defined as the absolute difference of the beautiful levels between two nodes connected by this edge, and the ugly level of the tree is the maximum of the ugly levels of all the edges on this tree, then what is the minimum possible ugly level of the tree, can you help him?
Input
The first line contains an positive integer T, represents there are T test cases.
For each test case:
The first line contains two positive integers n and k, represent the tree has n nodes, k leaf nodes of which have already been setted their beautiful levels.
The next (n−1) lines, each line contains two distinct positive integers u and v, repersent there is an undirected edge between node u and node v.
The next k lines, each lines contains two positive integers u and w, repersent node u is a leaf node, whose beautiful level is w.
There is a blank between each integer with no other extra space in one line.
It's guaranteed that the input edges constitute a tree.
1≤T≤10,2≤n≤5⋅104,1≤k≤n,1≤u,v≤n,1≤w≤109
Output
For each test case, output in one line a non-negative integer, repersents the minimum possible ugly level of the tree.
Sample Input
2
3 2
1 2
1 3
2 4
3 9
6 2
1 2
1 3
1 4
2 5
2 6
3 6
5 9
Sample Output
3
1
Hint
题意
zxa有一棵含有\(n\)个节点的无根树,包含\((n-1)\)条无向边,点从\(1\)到\(n\)编号,定义每个点的度数为与这个点相连的边的数量,度数为\(1\)的节点被称作这棵树的叶子节点。
zxa想给每个节点设置它的好看度,好看度必须为正整数。他的无根树有\(m(1\leq m\leq n)\)个叶子节点,其中的\(k(1\leq k\leq m)\)个叶子节点的好看度已经确定,zxa只需要设置其他节点的好看度。
zxa很好奇,如果令每条边的难看度是这条边所连接的两个节点的好看度差值的绝对值,整棵树的难看度是所有边的难看度中的最大值,那么这棵树的难看度最小是多少,你能帮助他吗?
题解:
二分答案之后,树形dp去跑每个节点的取值范围就好了
如果范围是允许的,那就可以直接返回true
否则就返回false
挺好的一道题
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 5e4+6;
int w[maxn],n,k,l[maxn],r[maxn],vis[maxn];
vector<int>E[maxn];
int dfsl(int x,int d)
{
for(int i=0;i<E[x].size();i++)
{
if(!vis[E[x][i]])
{
vis[E[x][i]]=1;
l[x]=max(l[x],dfsl(E[x][i],d));
}
}
return l[x]-d;
}
int dfsr(int x,int d)
{
for(int i=0;i<E[x].size();i++)
{
if(!vis[E[x][i]])
{
vis[E[x][i]]=1;
r[x]=min(r[x],dfsr(E[x][i],d));
}
}
return r[x]+d;
}
bool check(int mid)
{
for(int i=1;i<=n;i++)
if(w[i])l[i]=r[i]=w[i];
else l[i]=0,r[i]=1e9;
memset(vis,0,sizeof(vis));
dfsl(1,mid);
memset(vis,0,sizeof(vis));
dfsr(1,mid);
for(int i=1;i<=n;i++)
if(r[i]<l[i])return false;
return true;
}
void solve()
{
for(int i=0;i<maxn;i++)E[i].clear();
for(int i=0;i<maxn;i++)w[i]=0;
scanf("%d%d",&n,&k);
for(int i=1;i<n;i++)
{
int x,y;scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
for(int i=1;i<=k;i++)
{
int x,y;
scanf("%d%d",&x,&y);
w[x]=y;
}
int L=0,R=1e9,ans=1e9;
while(L<=R)
{
int mid=(L+R)/2;
if(check(mid))R=mid-1,ans=mid;
else L=mid+1;
}
cout<<ans<<endl;
}
int main()
{
int t;scanf("%d",&t);
while(t--)solve();
return 0;
}
HDU 5682 zxa and leaf 二分 树形dp的更多相关文章
- HDU 3586 Information Disturbing(二分+树形dp)
http://acm.split.hdu.edu.cn/showproblem.php?pid=3586 题意: 给定一个带权无向树,要切断所有叶子节点和1号节点(总根)的联系,每次切断边的费用不能超 ...
- hdu 5682 zxa and leaf
zxa and leaf Accepts: 25 Submissions: 249 Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 6 ...
- 【题解】hdu 3586 Information Disturbing 二分 树形dp
题目描述 Information DisturbingTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java ...
- 【bzoj5174】[Jsoi2013]哈利波特与死亡圣器 二分+树形dp
题目描述 给你一棵以1为根的有根树,初始除了1号点为黑色外其余点均为白色.Bob初始在1号点.每次Alice将其中至多k个点染黑,然后Bob移动到任意一个相邻节点,重复这个过程.求最小的k,使得无论B ...
- HDU 5682/BestCoder Round #83 1003 zxa and leaf 二分+树
zxa and leaf Problem Description zxa have an unrooted tree with n nodes, including (n−1) undirected ...
- HDU 1520.Anniversary party 基础的树形dp
Anniversary party Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Codeforces 627D Preorder Test(二分+树形DP)
题意:给出一棵无根树,每个节点有一个权值,现在要让dfs序的前k个结点的最小值最大,求出这个值. 考虑二分答案,把>=答案的点标记为1,<答案的点标记为0,现在的任务时使得dfs序的前k个 ...
- HDU 6201 2017沈阳网络赛 树形DP或者SPFA最长路
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6201 题意:给出一棵树,每个点有一个权值,代表商品的售价,树上每一条边上也有一个权值,代表从这条边经过 ...
- bzoj 2067: [Poi2004]SZN【贪心+二分+树形dp】
第一问就是Σ(deg[u]-1)/2+1 第二问是二分,判断的时候考虑第一问的贪心规则,对于奇度数的点,两两配对之后一条延伸到上面:对于欧度数的点,两两配对或者deg[u]-2的点配对,然后一条断在这 ...
随机推荐
- 转载-struts中logic标签使用
Struts中Logic逻辑标签的作用及用法 Struts中Logic逻辑标签的作用及用法 2006年10月18日 星期三 21:34 Terry原创,转载请说明作者及出处 Logic标签大部分的功能 ...
- AngularJS中ng-class使用方法
转自:https://blog.csdn.net/jumtre/article/details/50802136 其他博文ng-class使用方法:https://blog.csdn.net/sina ...
- MongoDB(3.6.3)的用户认证初识
Windows 10家庭中文版,MongoDB 3.6.3, 前言 刚刚安装好了MongoDB,启动了服务器-mongod命令,启动了MongoDB shell-mongo命令,不过,全程都没有使用u ...
- Python基础:内置类型(未完待续)
本文根据Python 3.6.5的官文Built-in Types而写. 目录 1.真值测试 2.布尔操作 -- and, or, not 3.比较 4.数字型 -- int, float, comp ...
- GO里的“指针”
指针 *T即为类型T的指针 &t即为获取变量t的地址 *p即为获取指针变量所指向的内容 var p *int 指针的*在左边 类型在右边.这里的 *int就是一个指针类型. 跟int str ...
- webpack3学习笔记
地址:https://segmentfault.com/a/1190000006843916 地址:https://www.chungold.com/my/course/32 地址:http://js ...
- ASP .Net Core系统部署到SUSE 16 Linux Enterprise Server 12 SP2 64 具体方案
.Net Core 部署到 SUSE 16 Linux Enterprise Server 12 SP2 64 位中的步骤 1.安装工具 1.apache 2..Net Core(dotnet-sdk ...
- Springboot + Vue + shiro 实现前后端分离、权限控制
本文总结自实习中对项目对重构.原先项目采用Springboot+freemarker模版,开发过程中觉得前端逻辑写的实在恶心,后端Controller层还必须返回Freemarker模版的ModelA ...
- 微信小程序地图模块
微信小程序的地图模块官方提供的API比较少,详情请见 官方文档 以下为一个示例 <!--pages/location/locati ...
- 最大子段和(Max Sum)
Max Sum. The following is an instance. a) (-2,11,-4,13,-5,-2) 思路: 最大子段和:给定一个序列(元素可正可负),找出其子序列中元素和 ...