OJ题号:
  BZOJ1010

思路:
  斜率优化动态规划。
  由题意得状态转移方程为$f_i=\displaystyle{\min_{j=0}^{i-1}}\{f_j+\left(i-j-1+\displaystyle{\sum_{k=j+1}^i}c_k-L\right)^2\}$。
  用$a_i$表示$c_i$的前缀和,则原式为$f_i=\displaystyle{\min_{j=0}^{i-1}}\{f_j+\left(i-j-1+a_i-a_j-L\right)^2\}$。
  考虑现在有两个状态$j$和$k$都可以转移到$i$。
  假设$j$比$k$更优,则有:$f_j+\left(i-j-1+a_i-a_j-L\right)^2<f_k+\left(i-k-1+=a_i-a_k-L\right)^2$。
  将与$i$有关的项提取出来,设$x=i-1+a_i-L$。
  则原式变为$f_j+\left(x-j-a_j\right)^2<f_k+\left(x-k-a_k\right)^2$。
  化简得$f_j+\left(j+a_j\right)^2-f_k-\left(k+a_k\right)^2<2x(j+a_j-k-a_k)$。
  即$\frac{f_j+\left(j+a_j\right)^2-f_k-\left(k+a_k\right)^2}{(j+a_j-k-a_k)}<2x$。
  对于状态$j<k<l$,若要使$k$为一个有用的状态,则有$\frac{f_k+(k+a_k)^2-f_j-(j+a_j)^2}{2(k+a_k-j-a_j)}<x\leq\frac{f_l+(l+a_l)^2-f_k-(k+a_k)^2}{2(l+a_l-k-a_k)}$。
  然后我们可以维护一个单调队列,使队列中的相邻元素的斜率单调递增。
  每当插入一个元素时,我们比较队列前端两个元素的斜率是否小于$x$,如果是,则将第一个元素弹出队列。
  这时候队列前端的元素一定是最优的一个状态。
  然后尝试将这个元素加入队列,为了保证队列中相邻元素之间的斜率单调递增,每次比较队列后端两个元素的斜率$x1$和队列最末端元素与当前元素$i$的斜率$x2$。
  如果$x1>x2$,即新加入元素后不满足单调性,则将队列末端元素弹出。
  由于每个元素最多只会进队一次,最后的时间复杂度是$O(n)$的。

 #include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
int n,l,a[N]={},q[N]={},h=,t=;
long long f[N]={};
inline long long sqr(const long long x) {
return x*x;
}
inline double slope(const int &j,const int &k) {
return double(f[j]+sqr(j+a[j])-f[k]-sqr(k+a[k]))/double(j+a[j]-k-a[k]);
}
inline bool check(const int &i,const int &j,const int &k) {
return slope(k,j)>*(i+a[i]-l-);
}
inline bool check2(const int &i,const int &j,const int &k) {
return slope(j,i)<slope(k,j);
}
int main() {
n=getint(),l=getint();
for(register int i=;i<=n;i++) {
a[i]=a[i-]+getint();
while(h<t&&!check(i,q[h],q[h+])) h++;
const int &j=q[h];
f[i]=f[j]+sqr(i-j-+a[i]-a[j]-l);
while(h<t&&!check2(q[t-],q[t],i)) t--;
q[++t]=i;
}
printf("%lld\n",f[n]);
return ;
}

[HNOI2008]玩具装箱的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  10. cogs 1330 [HNOI2008]玩具装箱toy

    cogs 1330 [HNOI2008]玩具装箱toy 瞎扯,急忙AC的请跳过 感觉数据结构写的太多了有点晕=+ 发现还没学斜率优化+- 于是来学一学QwQ 上次这题打了个决策优化直接水过了..理论O ...

随机推荐

  1. CentOS6.6 编译Redis报错:"Newer version of jemalloc required"

    一.前言 不同系统同一个问题,可能解决方法不一样,也可能会遇到不同的问题,所以具体情况具体分析,我的系统是Centos6.6, 查看系统命令  cat /etc/issue 二.安装redis后编译报 ...

  2. 配置虚拟机时间使其与国内时间同步,linux时间 ntp

    设置系统时间 [root@node2 ~]# date -s "10/30/18 09:30:00"Tue Oct 30 09:30:00 PDT 2018[root@node2 ...

  3. 公司内网yum源

    新增yum源配置文件 vi /etc/yum.repos.d/szyum.repo 内容如下: #[redhat6.3] [base] name=redhat63 baseurl=http://10. ...

  4. linux查看内存、CPU占用资源最多的进程

    [内存占用] #利用ps命令,默认使用ps参数会显示的结果 ps -aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 ...

  5. go语言版本变化

    The Go Project     Go is an open source project developed by a team at Google and many contributors  ...

  6. kafka集群及监控部署

    1. kafka的定义 kafka是一个分布式消息系统,由linkedin使用scala编写,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础 ...

  7. day10作业

    1.Java中,用{}括起来的代码称为代码块. 代码块分为局部代码块,构造代码块,静态代码块,同步代码块 局部代码块:在方法中出现,限定生命周期,及早释放,提高内存利用率 构造代码块:在类中方法外出现 ...

  8. 对于ElasticSearch与Hadoop是如何互相调用的?

    1.在HDFS中,数据是以文件形式保存的,比如JSON: https://blog.csdn.net/napoay/article/details/68945483 2.python读写HDFS,一般 ...

  9. 关于《C++ Templates》

    最近买了<C++ Templates>来看,书最开始部分阐述了关于此书的一些编程风格.本人感觉非常好,有些地方之前一直容易搞混,这里却讲述的很清楚.例如: 关于下面几种风格的代码: voi ...

  10. 【LOJ】#2031. 「SDOI2016」数字配对

    题解 这个图是个二分图,因为如果有一个奇环的话,我们会发现一个数变成另一个数要乘上个数不同的质数,显然不可能 然后我们发现这个不是求最大流,而是问一定价值的情况下最大流是多少,二分一个流量,加上一条边 ...