P2043 质因子分解
P2043 质因子分解
题目描述
对N!进行质因子分解。
输入输出格式
输入格式:
输入数据仅有一行包含一个正整数N,N<=10000。
输出格式:
输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开。表示N!包含a个质因子p,要求按p的值从小到大输出。
因为\(N\)的范围比较小,我们考虑将范围内的质数打表打出来。因为一个数有唯一质数分解,分解为有限个质数的乘积,所以我们对每一个\(N\!\)的因子进行质数分解,将所有因数答案累计即可
附:线性筛
int prime[maxn], tot;
bool vis[maxn];
void get_prime(int n){
for(int i = 2;i <= n;i++){
if(!vis[i])prime[++tot] = i;
for(int j = 1;j <= tot && prime[j] * i < n;j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0)break;
}
}
}
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int RD(){
int flag = 1, out = 0;char c = getchar();
while(c < '0' || c > '9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 10019;
int a;
int prime[maxn], tot;
bool vis[maxn];
void get_prime(int n){
for(int i = 2;i <= n;i++){
if(!vis[i])prime[++tot] = i;
for(int j = 1;j <= tot && prime[j] * i < n;j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0)break;
}
}
}
int ans[maxn];
int main(){
a = RD();
get_prime(a);
for(int i = 1;i <= a;i++){
int now = i;
for(int j = 1;j <= tot && prime[j] <= i;j++){
while(now % prime[j] == 0)ans[j]++, now /= prime[j];
}
}
for(int i = 1;i <= tot;i++){
if(ans[i])printf("%d %d\n", prime[i], ans[i]);
}
return 0;
}
P2043 质因子分解的更多相关文章
- P2043 质因子分解(阶乘的质因数分解)
P2043 质因子分解 对$n!$进行质因数分解的一种高效算法 首先,筛出$<=n$的素数 蓝后,对$n$反复除以$prime$,同时$cnt+=n/prime$ $n!$中含有该$prime$ ...
- luogu P2043 质因子分解
题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开.表示N ...
- 洛谷 P2043质因子分解 题解
题目传送门 N的范围很小,所以使用O(n2)的算法就能过啦! #include<bits/stdc++.h> using namespace std; ],n; int main(){ c ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题
题目链接:http://poj.org/problem?id=1845 定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元. 为什么要有乘法逆元呢? 当我们要求(a/b) mod p的 ...
- Lightoj-1356 Prime Independence(质因子分解)(Hopcroft-Karp优化的最大匹配)
题意: 找出一个集合中的最大独立集,任意两数字之间不能是素数倍数的关系. 思路: 最大独立集,必然是二分图. 最大数字50w,考虑对每个数质因子分解,然后枚举所有除去一个质因子后的数是否存在,存在则建 ...
- LightOJ1138 —— 阶乘末尾0、质因子分解
题目链接:https://vjudge.net/problem/LightOJ-1138 1138 - Trailing Zeroes (III) PDF (English) Statistic ...
- LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数
题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function PDF (English) Statistics Forum ...
随机推荐
- (第十周)Beta-2阶段成员贡献分
项目名:食物链教学工具 组名:奋斗吧兄弟 组长:黄兴 组员:李俞寰.杜桥.栾骄阳.王东涵 个人贡献分=基础分+表现分 基础分=5*5*0.5/5=2.5 成员得分如下: 成员 基础分 表现分 个人贡献 ...
- HttpContext.Current.Server.MapPath("/") 未将对象设置到对象的实例异常。
多线程中的System.Web.HttpContext.Current.Server.MapPath("/") 多线程中Server.MapPath会失效... 网上找到几种解决方 ...
- git的使用(本地及关联远程,上传到远程)
前言:本想这个博客就是用来交作业的,因为作业,学习了git ,现在觉得,既然有这个博客了,就好好用一下吧,也给自己养成个好习惯,就也来记录一下吧,关于git的本地仓库上传,本地与远程的关联,从本地上传 ...
- koa中接收前台传递的各种数据类型的方式
标签(空格分隔): koa 数据类型接收 主要介绍三种会用到的中间件,其实都是自己在开发的过程中踩过的坑 首先介绍koa-body [详情介绍 https://github.com/dlau/koa- ...
- 【转载】Vue项目中的文件/文件夹命名规范
文件或文件夹的命名遵循以下原则: index.js 或者 index.vue,统一使用小写字母开头的(kebab-case)命名规范 属于组件或类的,统一使用大写字母开头的(PascalCase)命名 ...
- [转帖]overlay文件系统解析
overlay文件系统解析 来源:http://dockone.io/article/1511 原作者: 陈爱珍 布道师@七牛云 一个 overlay 文件系统包含两个文件系统,一个 upper 文件 ...
- 微信小程序 功能函数 替换字符串内的指定字符
var str = 'abcadeacf'; var str1 = str.replace('a', 'o'); alert(str1); // 打印结果: obcadeacf var st ...
- 一文总结之MyBatis
目录 MyBatis 目标 MyBatis演示 Configuration.xml 映射文件 初始化配置文件 Dao Spring与MyBatis集成 pom Spring配置文件 MyBatis配置 ...
- 访问控制列表-ACL匹配规则
1 .ACL匹配机制 首先,小编为大家介绍ACL匹配机制.上一期提到,ACL在匹配报文时遵循“一旦命中即停止匹配”的原则.其实,这句话就是对ACL匹配机制的一个高度的概括.当然,ACL匹配过程中,还存 ...
- MT【132】倒序相加因式分解
设数列\(\{a_n\}\)的前\(n\)项和\(S_n\)满足\(S_{n+1}=a_2S_n+a_1,\)其中\(a_2\ne 0\)且\(a_2>-1\) 求证:\(S_n\le \dfr ...