题面:UVA1386 Cellular Automaton

矩阵乘法+快速幂解法:

这是一个比较裸的有点复杂需要优化的矩乘快速幂,所以推荐大家先做一下下列洛谷题目练练手:

(会了,差不多就是多倍经验题了)

注:如果你还不会矩阵乘法,可以移步了解一下P3390的题解

P1939 【模板】矩阵加速(数列)

P3390 【模板】矩阵快速幂

P1962 斐波那契数列

P4910 帕秋莉的手环

P4838 P哥破解密码

然后讲一下本题,读题我们发现这个环上所进行的 k 次操作都是一模一样的,还是相邻的数的和,于是想到用矩阵快速幂来写。

解题思路:

我们可以根据 d 的值来建出基础矩阵,举个例子(样例):

					1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

这是样例每一次操作所对应的乘法矩阵。我们要求出 k 次操作后的环上的元素等同于乘以 k 次这个矩阵,而这个过程可以直接用快速幂优化成log复杂度。

于是我们便可以光明正大的提交,然后光荣 TLE 了

为什么呢?我们看到数据范围:$ n \leq 500 $ !众所周知:矩阵乘法中矩阵上每一个元素都会被用行乘列的方式更新,所以复杂度为 \(n^3\),在乘上快速幂的一个log n ,不TLE才怪!

优化方案:

于是我们尝试优化一下(把那个 $ n^3 $ 降到 $ n^2 $ ):我们再看到上面样例的矩阵,可以发现它的下一行等于上一行所有的 1 向右移一位。所以我们进行矩阵乘法时可以不更新矩阵的每一个位置,而是只更新它的第一行(将它压缩一下)其它几行可以通过第一行推出来。

例如:

					0 2 1 1 2

我们可以通过这一行推出整个矩阵(向右移一位):

					0 2 1 1 2
2 0 2 1 1
1 2 0 2 1
1 1 2 0 2
2 1 1 2 0

于是乎,我们写一个新的”矩阵乘法“代码如下:

void cheng(ll a[],ll b[]){
for(int i=1;i<=n;i++)//预处理 1
res[i]=0,s[1][i]=b[i];
for(int i=2;i<=n;i++){
s[i][1]=s[i-1][n];
for(int j=2;j<=n;j++)
s[i][j]=s[i-1][j-1];
}// 解压一维矩阵,复杂度不会变回 n^3!
for(int i=1;i<=n;i++)
for(int k=1;k<=n;k++)
res[i]+=(a[k]*s[i][k])%m,res[i]%=m;
for(int i=1;i<=n;i++)a[i]=res[i];
}// 本题专用“矩阵乘法”
//请不要直接给a数组赋值,不然后果自负!

然后在用快速幂优化一下:

while(k){
if(k&1)cheng(ans,base);
cheng(base,base);
k>>=1;
}

完整代码:

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm> #define ll long long
#define db double
#define inf 0x7fffffff using namespace std; const int l=501;
int n,m,d,k;
ll s[l][l];
ll ans[l],base[l],res[l];
// ans=(answer),base(基础矩阵),res=(result)
// s数组是用来解压矩阵的(将一维矩阵换成二维) inline ll qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
ll res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=(res<<1)+(res<<3)+(ch^48);
return res;
} void cheng(ll a[],ll b[]){
for(int i=1;i<=n;i++)//预处理 1
res[i]=0,s[1][i]=b[i];
for(int i=2;i<=n;i++){
s[i][1]=s[i-1][n];
for(int j=2;j<=n;j++)
s[i][j]=s[i-1][j-1];
}// 解压一维矩阵,复杂度不会变回 n^3!
for(int i=1;i<=n;i++)
for(int k=1;k<=n;k++)
res[i]+=(a[k]*s[i][k])%m,res[i]%=m;
for(int i=1;i<=n;i++)a[i]=res[i];
}// 本题专用“矩阵乘法”
//请不要直接给a数组赋值,不然后果自负! int main(){
while(scanf("%d%d%d%d",&n,&m,&d,&k)!=EOF){
for(int i=1;i<=n;i++)//预处理 2
ans[i]=qr(),base[i]=0;
for(int i=0;i<=d;i++)//单位矩阵
base[1+i]=base[(n-i)%n+1]=1;
while(k){
if(k&1)cheng(ans,base);
cheng(base,base);
k>>=1;
}// 只有四行的快速幂
for(int i=1;i<n;++i){
printf("%lld ",ans[i]);
}printf("%lld\n",ans[n]);
}
return 0;
} //预处理 1:将res数组归零,将b数组赋值给s数组第一维以便压缩 //预处理 2:给ans数组赋初值,将单位矩阵清零

注:解压矩阵会消耗很多时间,也可以不解压,但乘起来会有些麻烦(蒟蒻手残,就不压行了吧)。

UVA1386 【Cellular Automaton】题解的更多相关文章

  1. 【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)

    http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 ...

  2. UVA 1386 - Cellular Automaton(循环矩阵)

    UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category ...

  3. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  4. POJ 3150 Cellular Automaton(矩阵快速幂)

    Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...

  5. POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)

    A cellular automaton is a collection of cells on a grid of specified shape that evolves through a nu ...

  6. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

  7. POJ 3150 Cellular Automaton --矩阵快速幂及优化

    题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...

  8. LA 3704 Cellular Automaton

    题意概述: 等价地,本题可以转化为下面的问题: 考虑$n \times n$的$0-1$矩阵$A$,在第$i$行上第$[-d+i, d+i]$(模$n$意义下)列对应的元素为$1$,其余为$0$.求$ ...

  9. POJ 3150 Cellular Automaton(矩阵乘法+二分)

    题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组 ...

随机推荐

  1. Struts2+json+hignchart(简单柱状图实现--适合jquery小白)

    做了一个简单的基于Struts2 + Json + HighChart的小例子,费了一下午+晚上的时间,虽然简单,但对于我这种Jquery+Ajax小白的人还是很值得记录的. 哈哈哈 # 0. 关键点 ...

  2. 【loj6145】「2017 山东三轮集训 Day7」Easy 动态点分治+线段树

    题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le ...

  3. springboot整合spring @Cache和Redis

    转载请注明出处:https://www.cnblogs.com/wenjunwei/p/10779450.html spring基于注解的缓存 对于缓存声明,spring的缓存提供了一组java注解: ...

  4. 【bzoj4011】 HNOI2015—落忆枫音

    http://www.lydsy.com/JudgeOnline/problem.php?id=4011 (题目链接) 题意 给出一个拓扑图,再加入一条边,问树形图个数. Solution 右转题解→ ...

  5. 前端学习 -- Css -- 伪元素

    :first-letter 表示第一个字符 :first-line 表示文字的第一行 :before 选中元素的最前边,一般该伪类都会结合content一起使用,通过content可以向指定位置添加内 ...

  6. 解题:洛谷2257 YY的GCD

    题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...

  7. 闲:测试memcpy和std::copy vector之间拷贝

    预测:底层C函数肯定比stl算法快 结果:少量数据底层快,大数据以上则stl对vector的处理可能更好 C/C++: #include <iostream> #include <v ...

  8. CDOJ--1056

    原题链接:http://acm.uestc.edu.cn/problem.php?pid=1056 题目:大小写切换 分析:以前这种问题我都是用dp写的,最近学到了一种更简洁的方法,特此记录下来! # ...

  9. SPSS数据类型:测量字段、角色字段

    一:测量字段 • 默认值.具有未知存储类型和值的数据(例如,由于其尚未被读取)将显示为<默认值>. •  连续.用于描述整数.实数或日期/时间等数字值,如范围 0 - 100 或 0.75 ...

  10. 约瑟夫环问题算法(M)

    http://blog.csdn.net/zhuimengzh/article/details/6727221 用户输入M,N值,从1至N开始顺序循环数数,每数到M输出该数值,直至全部输出.写出C程序 ...