Description

  

   有一棵\(n\)个节点的树(\(n \le 3000\)),第\(i\)条边连接\(a_i,b_i\),每个节点\(i\)上有\(A_i\)个石子,高桥君和青木君将在树上玩游戏。

  

​   首先,高桥君会选一个节点并在上面放一个棋子,然后从高桥君开始,他们轮流执行以下操作:

  

​   (1)从当前棋子占据的点上移除一个石子;

  

​   (2)将棋子移动到相邻节点

  

​   如果轮到一个人执行操作时棋子占据的点上没有石子,那么他就输了 。

  

​   请你找出所有的点\(v\),使得如果高桥君在游戏开始时把棋子放到\(v\)上,他可以赢。(按编号从小到大输出)

  

  

  

Solution

  

​   首先两个人的行动是互相约束的。

  

​   假设当前在节点\(u\),先手能耗死后手(即先手必胜)当且仅当对于其所有相邻点,至少存在一个点\(v\),满足:

  

​   (1)\(a_u>a_v\)

  

​   (2)\(v\)先手必败。

  

​   首先(1)是这题对局的一种博弈过程,设想有且只有两个点\(u\)和\(v\),若初始时棋子在\(u\),且\(a_u>a_v\),那么反复走,后手必死。

  

​   因此只要先手走向了如是的\(v\),后手必定不会在这条边上反复横跳,之后也不会,因为一旦后手走回来,先手继续走回\(v\),可以把后手耗到死。

  

​   那么后手必定也只能在\(v\)中寻找机会。只要\(v\)是先手必败态,那么\(u\)即为先手必胜态,因为先手可以主动走到\(v\)引出必败态。

  

​  

  

​   定义\(u\)是先手必败态当且仅当不存在上述\(v\)。

  

​   首先,如果先手走向的点\(v\)满足\(a_u\le a_v\),后手可以走回\(u\),因为反复横跳后先手必死。因此这些点不可走。

  

​   走向的点\(v\)满足\(a_u>a_v\)时,若\(v\)为先手必胜态,那么\(u\)肯定不能走这一步;如果不存在\(v\)是先手必败态,那么先手就无路可走了。

  

​   综上,因为必须走一步,所以\(u\)是先手必败态,当且仅当不存在\(v\)满足\(a_u>a_v\)且\(v\)先手必败。

  

​   对于每一个点,以其为根深搜,设\(f_u\)表示\(u\)是必胜还是必败,自底向上DP一遍。

  

​  为什么可以自底向上单向考虑?我们是要DP判定每个点\(u\)是不是必胜态,即要找到是否存在相邻点\(v\)满足\(a_u>a_v\),并深搜计算它们的必胜必败态。而对于不满足条件的\(v\),我们甚至不需要递归进去计算,因为先手不会选择走这边。所以,会选择\(u\)的父亲作为\(v\)吗?不会。每递归到\(u\)时,也就意味着,是上一步的先手想逼我(当前先手)反复横跳才走这一步过来,即满足\(a_{fa}>a_u\),所以当前先手肯定不能走父亲回去和他反复横跳。因此可以说,DP过程中,是一路向下,走后继递归计算的。

  

   时间复杂度\(\mathcal O(n^2)\)。

  

   我真TM可以退役了。

Code

#include <cstdio>
using namespace std;
const int N=3005;
int n,a[N],f[N];
int h[N],tot;
struct Edge{int v,next;}e[N*2];
inline void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i);
int u,v;
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
addEdge(u,v);
}
}
void dfs(int u,int fa){
f[u]=0;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa&&a[u]>a[v]){
dfs(v,u);
if(f[v]==0){
f[u]=1;
return;
}
}
}
void solve(){
for(int u=1;u<=n;u++){
dfs(u,0);
if(f[u])
printf("%d ",u);
}
}
int main(){
readData();
solve();
return 0;
}

【AGC010F】Tree Game的更多相关文章

  1. 【AGC010F】Tree Game 博弈论+暴力

    Description ​ 有一棵nn个节点的树,第ii条边连接ai,biai,bi,每个节点ii上有AiAi个石子,高桥君和青木君将在树上玩游戏 ​ 首先,高桥君会选一个节点并在上面放一个棋子,然后 ...

  2. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  3. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  4. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  5. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  6. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  7. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  8. 【BZOJ2654】Tree(凸优化,最小生成树)

    [BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...

  9. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

随机推荐

  1. Unity3D之AR开发(一)

    近期研究了下AR技术,下面给大家分享一下. 第一种方法:高通AR(Vuforia) Vuforia插件下载地址(官网): https://developer.vuforia.com/downloads ...

  2. 宝塔中mysql数据库命名小坑

    今天在通过宝塔新建网站,添加mysql数据库,名字中间有下划线,发现能够创建成功,但是实际链接后,是没有这个数据库的.是宝塔的原因还是liunx服务器的原因? 不支持下划线的数据库名字吗? 比如 bo ...

  3. docker server gave HTTP response to HTTPS client 问题处理办法

    vi /etc/docker/daemon.json [root@localhost ~]# cat /etc/docker/daemon.json {"insecure-registrie ...

  4. 2013第四届蓝桥杯C/C++ B组

    题目标题: 高斯日记:Excel 大数学家高斯有个好习惯:无论如何都要记日记. 他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210 后来人们知道,那个整数就是日期,它表示 ...

  5. Tomcat java zabbix 监控

    排除汤姆猫错误的步骤 ps-ef | grep java或jps –lvm 查看java pid进程 netstat –lntup | grep java 查看java 端口有没有启动 查看 tomc ...

  6. OGG 跳过事务(转)

    http://blog.chinaunix.net/uid-26190993-id-3434074.html    在OGG运行过程中,通常会因为各种各样的原因导致容灾端的REPLICAT进程ABEN ...

  7. 随手记录-linux-Linux目录结构

    转:别人的 装完Linux,首先需要弄清Linux 标准目录结构 / root —?启动Linux时使用的一些核心文件.如操作系统内核.引导程序Grub等. home —?存储普通用户的个人文件 ft ...

  8. 网页调起App之应用实践

    声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场.举报 新春佳节即将到来,北京的上地&西二旗.望京&国贸.五道口&中关村地区等程序员 ...

  9. Python数据结构练习

    1. 给定列表L,如[2,5,3,8,10,1],对其进行升序排序并输出. 代码: list = [2,5,8,10,1] print(list) list.sort() print(list) 2. ...

  10. 关于 error C2001: 常量中有换行符

    看过之后,还是有所收获的,先mark一下 原链接: http://www.cnblogs.com/cocos2d-x/archive/2012/02/26/2368873.html#commentfo ...