【AGC010F】Tree Game
Description
有一棵\(n\)个节点的树(\(n \le 3000\)),第\(i\)条边连接\(a_i,b_i\),每个节点\(i\)上有\(A_i\)个石子,高桥君和青木君将在树上玩游戏。
首先,高桥君会选一个节点并在上面放一个棋子,然后从高桥君开始,他们轮流执行以下操作:
(1)从当前棋子占据的点上移除一个石子;
(2)将棋子移动到相邻节点
如果轮到一个人执行操作时棋子占据的点上没有石子,那么他就输了 。
请你找出所有的点\(v\),使得如果高桥君在游戏开始时把棋子放到\(v\)上,他可以赢。(按编号从小到大输出)
Solution
首先两个人的行动是互相约束的。
假设当前在节点\(u\),先手能耗死后手(即先手必胜)当且仅当对于其所有相邻点,至少存在一个点\(v\),满足:
(1)\(a_u>a_v\)
(2)\(v\)先手必败。
首先(1)是这题对局的一种博弈过程,设想有且只有两个点\(u\)和\(v\),若初始时棋子在\(u\),且\(a_u>a_v\),那么反复走,后手必死。
因此只要先手走向了如是的\(v\),后手必定不会在这条边上反复横跳,之后也不会,因为一旦后手走回来,先手继续走回\(v\),可以把后手耗到死。
那么后手必定也只能在\(v\)中寻找机会。只要\(v\)是先手必败态,那么\(u\)即为先手必胜态,因为先手可以主动走到\(v\)引出必败态。
定义\(u\)是先手必败态当且仅当不存在上述\(v\)。
首先,如果先手走向的点\(v\)满足\(a_u\le a_v\),后手可以走回\(u\),因为反复横跳后先手必死。因此这些点不可走。
走向的点\(v\)满足\(a_u>a_v\)时,若\(v\)为先手必胜态,那么\(u\)肯定不能走这一步;如果不存在\(v\)是先手必败态,那么先手就无路可走了。
综上,因为必须走一步,所以\(u\)是先手必败态,当且仅当不存在\(v\)满足\(a_u>a_v\)且\(v\)先手必败。
对于每一个点,以其为根深搜,设\(f_u\)表示\(u\)是必胜还是必败,自底向上DP一遍。
为什么可以自底向上单向考虑?我们是要DP判定每个点\(u\)是不是必胜态,即要找到是否存在相邻点\(v\)满足\(a_u>a_v\),并深搜计算它们的必胜必败态。而对于不满足条件的\(v\),我们甚至不需要递归进去计算,因为先手不会选择走这边。所以,会选择\(u\)的父亲作为\(v\)吗?不会。每递归到\(u\)时,也就意味着,是上一步的先手想逼我(当前先手)反复横跳才走这一步过来,即满足\(a_{fa}>a_u\),所以当前先手肯定不能走父亲回去和他反复横跳。因此可以说,DP过程中,是一路向下,走后继递归计算的。
时间复杂度\(\mathcal O(n^2)\)。
我真TM可以退役了。
Code
#include <cstdio>
using namespace std;
const int N=3005;
int n,a[N],f[N];
int h[N],tot;
struct Edge{int v,next;}e[N*2];
inline void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i);
int u,v;
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
addEdge(u,v);
}
}
void dfs(int u,int fa){
f[u]=0;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa&&a[u]>a[v]){
dfs(v,u);
if(f[v]==0){
f[u]=1;
return;
}
}
}
void solve(){
for(int u=1;u<=n;u++){
dfs(u,0);
if(f[u])
printf("%d ",u);
}
}
int main(){
readData();
solve();
return 0;
}
【AGC010F】Tree Game的更多相关文章
- 【AGC010F】Tree Game 博弈论+暴力
Description 有一棵nn个节点的树,第ii条边连接ai,biai,bi,每个节点ii上有AiAi个石子,高桥君和青木君将在树上玩游戏 首先,高桥君会选一个节点并在上面放一个棋子,然后 ...
- 【POJ3237】Tree 树链剖分+线段树
[POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...
- 【BZOJ】【2631】Tree
LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...
- 【Luogu1501】Tree(Link-Cut Tree)
[Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...
- 【BZOJ3282】Tree (Link-Cut Tree)
[BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...
- 【AtCoder3611】Tree MST(点分治,最小生成树)
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...
- 【HDU5909】Tree Cutting(FWT)
[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【POJ1741】Tree(点分治)
[POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...
随机推荐
- python函数之format
自python2.6开始,新增了一种格式化字符串的函数str.format(),此函数可以快速处理各种字符串,它增强了字符串格式化的功能. 基本语法是通过{}和:来代替%.format函数可以接受不限 ...
- docker中创建MySQL及在外部使用Navicat连接
1:获取MySQL镜像 运行 docker pull mysql [root@MyCentos7- ~]# docker pull mysql Using default tag: latest la ...
- 新手Python第三天(函数)
Python 函数的创建 def func2(): print('haha') # 函数的返回值 # 函数的返回值,没有定义返回None, # 有一个返回值返回这个object(可以返回一个函数对象) ...
- 查看、生成 SSH 密钥用于安全登陆
SSH 可以用来登陆服务器,远程执行命令,并用强加密算法编码保护通信安全,目前广泛应用于远程命令控制.文件加密传输等方面.SSH 登陆服务器的方法一般有两种:密码登陆和密钥登陆. 在受信任的设备上使用 ...
- 【RL系列】Multi-Armed Bandit笔记补充(二)
本篇的主题是对Upper Conference Bound(UCB)策略进行一个理论上的解释补充,主要探讨UCB方法的由来与相关公式的推导. UCB是一种动作选择策略,主要用来解决epsilon-gr ...
- js传输txt文档内容
要求:实现修改text文档内容,即可将text修改内容传到页面显示: HTML: <!doctype html> <html lang="en"> < ...
- web项目中nicedit富文本编辑器的使用
web项目中nicedit富文本编辑器的使用 一.为什么要用富文本编辑器? 先说什么是富文本编辑器吧,普通的html中input或textarea标签只能进行简单的输入,而做不到其他的文本调整功能,甚 ...
- myeclipse 导入 import maven web project
用google才收到了这个.. http://stackoverflow.com/questions/12197662/maven-java-web-project-not-recognised-wh ...
- jquery ajax 跨域问题
前言:关于跨域CORS 1.没有跨域时,ajax默认是带cookie的 2.跨域时,两种解决方案: 1)服务器端在filter中配置 详情:http://blog.csdn.net/wzl002/ar ...
- FindBugs插件的使用手册
安装FindBugs直接查找eclipse的商店,查找spot Bugs 插件,安装即可 完成安装之后重启eclipse,右击项目文件或目录,会发现多了Findbugs的菜单: 使用Findbugs ...