Description

给出1~n的一个排列的一个最长上升子序列,求原排列可能的种类数。

Input

第一行一个整数n。

第二行一个整数k,表示最长上升子序列的长度。

第三行k个整数,表示这个最长上升子序列。

Output

第一行一个整数,表示原排列可能的种类数。

Sample Input

5

3

1 3 4

Sample Output

11

HINT

【样例说明】

11种排列分别为(1, 3, 2, 5, 4), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (2, 1, 3, 5, 4), (2, 1, 5, 3, 4), (2, 5, 1, 3, 4), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 2, 1, 3, 4)。

【数据规模和约定】

对于30%的数据,1 <= n <= 11。

对于70%的数据,1 <= n <= 14。

对于100%的数据,1 <= n <= 15,答案小于2^31。

Solution

一道dp题

我们先考虑对一个数列求LIS的方法(\(log\) 的那个),一个 \(lis\) 数组,\(lis[i]\) 记录长度为 \(i\) 的LIS的末尾最小可以是多少

对于 \(lis\) 整个数组,不难发现它是单调递增的,所以我们可以用二进制表示它,一样是01表示某个数是否出现在 \(lis\) 数组中,因为递增,所以我们这要知道有哪些数在里面,就可以还原出原来的 \(lis\) 数组

然后考虑本题的dp,我们用一个 \(f\) ,考虑对于当前的LIS,插入新数的情况

所以要保存每个数的三个状态

一是这个数还没有被考虑,二是这个数已被考虑,并且在LIS数组中出现,三是这个数已经被考虑,并且已经被弹出LIS数组

所以用三进制压位,012分别代表上面三个状态

转移时,枚举每一个LIS的情况,然后枚举每一个数,插入进去,再把当前的状态转移到插入后的状态

这种dp题看代码更好理解

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=16,MAXN_3=14348907+10;
int A[MAXN],n,m,pos[MAXN],lis[MAXN],vis[MAXN],val[MAXN],f[MAXN_3],ans,qexp3[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(m);
for(register int i=1;i<=m;++i)
{
read(A[i]);
A[i]--;
pos[A[i]]=i;
if(i>=2&&A[i-1]>A[i])
{
write(0,'\n');
return 0;
}
}
qexp3[0]=1;
for(register int i=1;i<=n;++i)qexp3[i]=qexp3[i-1]*3;
f[0]=1;
for(register int i=0;i<qexp3[n];++i)
{
if(!f[i])continue;
int x=i,lislen=0,app=0;
for(register int j=0;j<n;++j)
{
val[j]=vis[j]=x%3;
x/=3;
if(vis[j])app++;
if(val[j]==1)lis[lislen++]=j;
}
if(app==n)
{
ans+=f[i];
continue;
}
int ins=0;
for(register int j=0;j<n;++j)
{
if(vis[j])continue;
if(pos[j]>1&&!vis[A[pos[j]-1]])continue;
while(ins<lislen&&lis[ins]<j)ins++;
if(ins==m)continue;
int nxt=i+qexp3[j];
if(ins<lislen)nxt+=qexp3[lis[ins]];
f[nxt]+=f[i];
}
}
write(ans,'\n');
return 0;
}

【刷题】BZOJ 3591 最长上升子序列的更多相关文章

  1. BZOJ.3591.最长上升子序列(状压DP)

    BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...

  2. BZOJ 2423 最长公共子序列

    Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...

  3. BZOJ 3173 最长上升子序列(树状数组+二分+线段树)

    给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...

  4. BZOJ 5427: 最长上升子序列

    $f[i] 表示长度为i的最长上升子序列的最后一位的最小值是多少$ 对于普通的$LIS我们可以二分确定位置去更新$ 再来考虑对于这个,如果有某一位没有确定的话 那么这一位是可以随便取的,也就是说,所有 ...

  5. bzoj 3173 最长上升子序列

    Written with StackEdit. Description 给定一个序列,初始为空.现在我们将\(1\)到\(N\)的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字, ...

  6. #leetcode刷题之路32-最长有效括号

    给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 示例 1:输入: "(()"输出: 2解释: 最长有效括号子串为 "()"示 ...

  7. #leetcode刷题之路14-最长公共前缀

    编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...

  8. #leetcode刷题之路5-最长回文子串

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1:输入: "babad"输出: "bab"注意: " ...

  9. 刷题总结:最长公共字串(spoj1811)(后缀自动机)

    题目: 就不贴了吧···如题: 题解: 后缀自动机模版题:没啥好说的···· 代码: #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. IOS测试-Fastmonkey

    目录: 一.背景 二.Fastmonkey介绍 三.Fastmonkey操作前准备 四.Fastmonkey工程配置过程 五.执行Monkey测试 六.FAQ Fastmonkey实践 一.背景: 因 ...

  2. [硬件配置]记录Ubuntu 14.04 下安装无线网卡驱动解决无法连接WiFi的过程

    新电脑安装了Ubuntu 14.04,但是网络连接中只有以太网而没有WiFi的选项. 打开System Setting系统设置-Software&Updates软件&更新-Additi ...

  3. TPO-21 C1 Find a building for orientation

    TPO-21 C1 Find a building for orientation 第 1 段 1.Listen to a conversation between a student and a p ...

  4. hover时显示可跟随鼠标移动的浮动框,运用函数节流与去抖进行优化

    在很多笔试面试题中总能看到js函数去抖和函数节流,看过很多关于这两者的讨论,最近终于在一个需求中使用了函数去抖(debounce)和函数节流(throttle). 需要完成的效果是,鼠标在表格的单元格 ...

  5. 007 --MySQL索引底层实现原理

    MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构.提取句子主干,就可以得到索引的本质:索引是数据结构. 我们知道,数据库查询是数据库的最主要功能之一.我们都希望查 ...

  6. 【深度学习的实用层面】(一)训练,验证,测试集(Train/Dev/Test sets)

    在配置训练.验证.和测试数据集的过程中做出正确的决策会更好地创建高效的神经网络,所以需要对这三个名词有一个清晰的认识. 训练集:用来训练模型 验证集:用于调整模型的超参数,验证不同算法,检验哪种算法更 ...

  7. Tomcat ngxin 反向代理

    tomcat nginx 反向代理 安装nginx yum直接安装 yum install nginx –y 也可以编译安装 这是用编译安装,新手可以用yum安装 配置文件在 /etc/nginx/c ...

  8. mac 上面安装 tree 命令

    相信很多使用过Linux的用户都用过tree命令,它可以像windows的文件管理器一样清楚明了的显示目录结构. 但是mac下默认是没有 tree命令的. 1.我们可以使用find命令模拟出tree命 ...

  9. css修改input自动提示的黄色背景

    css修改input自动提示的黄色背景 input:-webkit-autofill { background-color: #FAFFBD; background-image: none; -web ...

  10. 【探路者】Final发布

    [探路者]团队项目final发布:贪吃蛇 [探路者]贪吃蛇 final发布展示(视频)链接: http://v.youku.com/v_show/id_XMzIxMDM2MTQ1Ng==.html?s ...