Description

给出1~n的一个排列的一个最长上升子序列,求原排列可能的种类数。

Input

第一行一个整数n。

第二行一个整数k,表示最长上升子序列的长度。

第三行k个整数,表示这个最长上升子序列。

Output

第一行一个整数,表示原排列可能的种类数。

Sample Input

5

3

1 3 4

Sample Output

11

HINT

【样例说明】

11种排列分别为(1, 3, 2, 5, 4), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (2, 1, 3, 5, 4), (2, 1, 5, 3, 4), (2, 5, 1, 3, 4), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 2, 1, 3, 4)。

【数据规模和约定】

对于30%的数据,1 <= n <= 11。

对于70%的数据,1 <= n <= 14。

对于100%的数据,1 <= n <= 15,答案小于2^31。

Solution

一道dp题

我们先考虑对一个数列求LIS的方法(\(log\) 的那个),一个 \(lis\) 数组,\(lis[i]\) 记录长度为 \(i\) 的LIS的末尾最小可以是多少

对于 \(lis\) 整个数组,不难发现它是单调递增的,所以我们可以用二进制表示它,一样是01表示某个数是否出现在 \(lis\) 数组中,因为递增,所以我们这要知道有哪些数在里面,就可以还原出原来的 \(lis\) 数组

然后考虑本题的dp,我们用一个 \(f\) ,考虑对于当前的LIS,插入新数的情况

所以要保存每个数的三个状态

一是这个数还没有被考虑,二是这个数已被考虑,并且在LIS数组中出现,三是这个数已经被考虑,并且已经被弹出LIS数组

所以用三进制压位,012分别代表上面三个状态

转移时,枚举每一个LIS的情况,然后枚举每一个数,插入进去,再把当前的状态转移到插入后的状态

这种dp题看代码更好理解

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=16,MAXN_3=14348907+10;
int A[MAXN],n,m,pos[MAXN],lis[MAXN],vis[MAXN],val[MAXN],f[MAXN_3],ans,qexp3[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(m);
for(register int i=1;i<=m;++i)
{
read(A[i]);
A[i]--;
pos[A[i]]=i;
if(i>=2&&A[i-1]>A[i])
{
write(0,'\n');
return 0;
}
}
qexp3[0]=1;
for(register int i=1;i<=n;++i)qexp3[i]=qexp3[i-1]*3;
f[0]=1;
for(register int i=0;i<qexp3[n];++i)
{
if(!f[i])continue;
int x=i,lislen=0,app=0;
for(register int j=0;j<n;++j)
{
val[j]=vis[j]=x%3;
x/=3;
if(vis[j])app++;
if(val[j]==1)lis[lislen++]=j;
}
if(app==n)
{
ans+=f[i];
continue;
}
int ins=0;
for(register int j=0;j<n;++j)
{
if(vis[j])continue;
if(pos[j]>1&&!vis[A[pos[j]-1]])continue;
while(ins<lislen&&lis[ins]<j)ins++;
if(ins==m)continue;
int nxt=i+qexp3[j];
if(ins<lislen)nxt+=qexp3[lis[ins]];
f[nxt]+=f[i];
}
}
write(ans,'\n');
return 0;
}

【刷题】BZOJ 3591 最长上升子序列的更多相关文章

  1. BZOJ.3591.最长上升子序列(状压DP)

    BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...

  2. BZOJ 2423 最长公共子序列

    Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...

  3. BZOJ 3173 最长上升子序列(树状数组+二分+线段树)

    给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...

  4. BZOJ 5427: 最长上升子序列

    $f[i] 表示长度为i的最长上升子序列的最后一位的最小值是多少$ 对于普通的$LIS我们可以二分确定位置去更新$ 再来考虑对于这个,如果有某一位没有确定的话 那么这一位是可以随便取的,也就是说,所有 ...

  5. bzoj 3173 最长上升子序列

    Written with StackEdit. Description 给定一个序列,初始为空.现在我们将\(1\)到\(N\)的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字, ...

  6. #leetcode刷题之路32-最长有效括号

    给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 示例 1:输入: "(()"输出: 2解释: 最长有效括号子串为 "()"示 ...

  7. #leetcode刷题之路14-最长公共前缀

    编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...

  8. #leetcode刷题之路5-最长回文子串

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1:输入: "babad"输出: "bab"注意: " ...

  9. 刷题总结:最长公共字串(spoj1811)(后缀自动机)

    题目: 就不贴了吧···如题: 题解: 后缀自动机模版题:没啥好说的···· 代码: #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. centos7 安装jenkenis

    安装Java 看到当前系统Java版本的命令: java -version 如果显示Java版本号,说明已经正确安装,如果显示没有该命令,需要安装Java: sudo yum install java ...

  2. 详解YUV420数据格式

    原文地址:http://www.cnblogs.com/azraelly/archive/2013/01/01/2841269.html 1. YUV简介 YUV定义:分为三个分量,“Y”表示明亮度( ...

  3. 错误结果保存示例 - 【jmeter】

  4. Netty源码分析第1章(Netty启动流程)---->第5节: 绑定端口

    Netty源码分析第一章:Netty启动步骤 第五节:绑定端口 上一小节我们学习了channel注册在selector的步骤, 仅仅做了注册但并没有监听事件, 事件是如何监听的呢? 我们继续跟第一小节 ...

  5. 用可道云kodexplorer在dedecms系统网站上秒建私人网盘

    国内草根站长用的最多的一款建站源程序就是dedecms,通常是通过FTP或者服务器面板自带的文件管理器来上传下载的.FTP可视性.体验都相对差一点,且需要事先安装FTP软件,更换环境后的站点管理上有很 ...

  6. java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper

    RabbitMq配置时常见错误 java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper <de ...

  7. 使用Spring boot 嵌入的tomcat不能启动: Unregistering JMX-exposed beans on shutdown

    新建一个spring boot的web项目,运行之后控制台输出“Unregistering JMX-exposed beans on shutdown”,tomcat也没有运行.寻找原因,看了下pom ...

  8. Microsoft Visual Studio 2013 的安装及单元测试

    题目:练习教科书第22~25页单元测试练习,要求自行安装Visual Studio开发平台,版本至少在2010以上,要求把程序安装过程和练习过程写到博客上,越详细越好,要图文并茂. 安装过程: 1.下 ...

  9. android学习-2 (AVD 创建)

    在Android studio的tools下选择AVD manager 按照指示选择相应的硬件和系统映像. 在模拟器中运行应用 选择RUN APP 选择RUN时,并不只运行应用,还会处理运行应用所需要 ...

  10. vim搭建C编程IDE

    曾经在一篇关于vim技巧的文章里有一句话:"世界上只有三种编辑器,EMACS.VIM和其它." 我不知道这是不是太过于绝对了,但是从我所看到的每一篇linux下编程以及文字编辑的文 ...