【BZOJ4709】【Jsoi2011】柠檬
Description
传送门
题意简述:将序列划分成任意多段,从每一段选出一个数\(x\),获得\(在这一段出现的次数x*(x在这一段出现的次数)\)的贡献。求总贡献最大值。
Solution
首先,要发现一个很重要的性质:如果某一段选了\(x\),那么这一段一定是以\(x\)开头、以\(x\)结尾的一段。否则,可以将此段缩减至以\(x\)开头、以\(x\)结尾的更小的一段,虽然贡献没有变,但留给其他段的机会更多。
设\(f_i\)表示\(1...i\)的贡献最大值。记\(a_i\)表示\(i\)的数值,\(b_i\)表示\(a_i\)在相同的值中是第几个出现的。显然如果要从别的\(f_j\)转移到\(f_i\),必须满足\(a_{j+1}==a_i\)。我们有转移方程:
\]
设\(j\)为最优转移点:
f_i&=f_{j-1}+a_i(b_i-(b_j-1))^2\\
f_i&=f_{j-1}+a_i(b_i^2-2b_i(b_j-1)+(b_j-1)^2)\\
f_i&=f_{j-1}+a_ib_i^2-2a_ib_i(b_j-1)+a_i(b_j-1)^2\\
f_{j-1}+a_i(b_j-1)^2&=2a_ib_i(b_j-1)+f_i-a_ib_i^2
\end{aligned}
\]
这其实是一个直线的式子:\(k=2a_ib_i\),\(x=(b_j-1)\),\(b=(f_i-a_ib_i^2)\),\(y=f_{j-1}+a_i(b_j-1)^2\).
其中\(a_i\)看似和\(i\)有关,无法继续推理。但由于转移的\(j\)满足\(a_j=a_i\),所以每一个位置的数在参与上述DP时,相关联的\(a\)其实就是每一个元素自己的数值,是一个定值。
把每一个元素看成二维平面的一个点\((x,y)\)。由于最优转移相当于最大化截距,那么最优转移点\(j\)可以看做在斜率为\(k\)的时候上凸包碰到的第一个点。
那么我们扫描序列时,维护每一个数值对应的上凸包,每次查询时在上面二分即可。
时间复杂度\(\mathcal O(n \lg n)\)。
当然,也可以用斜率优化直接做。
Code
#include <cstdio>
#include <vector>
#define k(i) (2LL*a[i]*b[i])
#define x(i) (b[i]-1LL)
#define y(i) (f[i-1]+1LL*a[i]*(b[i]-1)*(b[i]-1))
#define b(i) (f[i]-1LL*a[i]*b[i]*b[i])
#define pb push_back
#define db pop_back
using namespace std;
typedef long long ll;
const int N=100005,S=10005;
const double EPS=1e-6;
int n,a[N],ecnt[S],b[N];
ll f[N];
vector<int> s[S];
int slen[S];
double slope(int u,int v){return 1.0*(y(v)-y(u))/(x(v)-x(u));}
int query(int col,int k){
k=2*col*k;
int l=0,r=slen[col]-2,mid;
while(l<=r){
mid=(l+r)>>1;
if(slope(s[col][mid],s[col][mid+1])-EPS<=k) r=mid-1;
else l=mid+1;
}
return s[col][l];
}
void insert(int col,int i){
int sz=slen[col];
while(sz>1&&slope(s[col][sz-2],s[col][sz-1])<slope(s[col][sz-1],i))
sz--,slen[col]--,s[col].db();
s[col].pb(i);
slen[col]++;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",a+i);
b[i]=++ecnt[a[i]];
}
for(int i=1;i<=n;i++){
insert(a[i],i);
int j=query(a[i],b[i]);
f[i]=(j?f[j-1]:f[i-1])+1LL*a[i]*(b[i]-b[j]+1)*(b[i]-b[j]+1);
}
printf("%lld\n",f[n]);
return 0;
}
【BZOJ4709】【Jsoi2011】柠檬的更多相关文章
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
- BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- BZOJ4709 JSOI2011柠檬(动态规划)
首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...
- [BZOJ4709][JSOI2011]柠檬(斜率优化DP)
显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...
- [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp
题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...
- BZOJ4709: [Jsoi2011]柠檬(决策单调性)
题意 题目链接 Sol 结论:每次选择的区间一定满足首位元素相同.. 仔细想想其实挺显然的,如果不相同可以删掉多着的元素,对答案的贡献是相同的 那么设\(f[i]\)表示到第\(i\)个位置的最大价值 ...
- 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
[BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...
- 4709: [Jsoi2011]柠檬
4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...
- 【BZOJ4709】柠檬(动态规划,单调栈)
[BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...
随机推荐
- Cocos2d-x Lua 学习
mian.lua 文件是程序的入口.加载GameScene场景,调用场景方法. GameScene.lua 文件负责创建游戏主场景,主要写场景方法,由主函数调用.
- shell解析ini格式文件
功能 本脚本实现了ini文件中的查询修改指定value 百度云连接地址 链接:https://pan.baidu.com/s/12_T5yST7Y3L1H4_MkVEcvA 密码:fo5p 解压后先看 ...
- kubernetes dashboard 安装时出现9090: getsockopt: connection refused错误
转载于:https://blog.csdn.net/lucy06/article/details/79082302 安装kubernetes dashboard时,出现错误: Error: 'dia ...
- DenseNet——Densely Connected Convolutional Networks
1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络. 针对每一层网络,其前面所有层的特 ...
- Python 自动爬取B站视频
文件名自定义(文件格式为.py),脚本内容: #!/usr/bin/env python #-*-coding:utf-8-*- import requests import random impor ...
- stat命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangcsdn/article/details/81012732 stat命令用于显示文件的状态信息.stat命令的 ...
- css修改input自动提示的黄色背景
css修改input自动提示的黄色背景 input:-webkit-autofill { background-color: #FAFFBD; background-image: none; -web ...
- 互评Beta版本——杨老师粉丝群——Pinball
互评beta版本 杨老师粉丝群——<PinBall> 一.基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题 (1)N(Need,需求) 随着年龄的增长, ...
- “学霸系统”app——NABC
“学霸系统”客户端项目是我们小组本次的课题. 一.需求(need) 对于这款软件,我们的目标是在手机端移植并实现网页端已有的用户管理.搜索.分类.上传下载.用户贡献与交互等功能,从而完成从PC到终端的 ...
- No.1001_第六次团队会议
黯淡的一日 今天发生了很令人不爽的一件事,杜正远又被叫去实验室了.昨天界面就很难做,而且我们组人手稀缺,他的缺席让我很难做下去. 今天开会我自己没做出什么来,就加了一个群组的添加功能,同样,曾哲昊也没 ...