转载自 huxihx,原文链接 Kafka副本管理—— 为何去掉replica.lag.max.messages参数

Kafka设计解析(二)Kafka High Availability (上)文中的ACK前需要保证有多少个备份小节说到,如果一个Follower宕机,或者落后太多,Leader将把它从ISR(即in-sync Replica)中移除。这里所描述的“落后太多”指Follower复制的消息落后于Leader后的条数超过预定值(该值可在$KAFKA_HOME/config/server.properties中通过replica.lag.max.messages配置,其默认值是4000)或者Follower超过一定时间(该值可在$KAFKA_HOME/config/server.properties中通过replica.lag.time.max.ms来配置,其默认值是10000)未向Leader发送fetch请求。

但replica.lag.max.messages参数在Kafka 0.10.0版本被移除了,接下来一起来看看参数被移除的原因。

今天查看Kafka 0.10.0的官方文档,发现了这样一句话:Configuration parameter replica.lag.max.messages was removed. Partition leaders will no longer consider the number of lagging messages when deciding which replicas are in sync. 即replica.lag.max.messages参数被正式地移除了,现在topic每个分区的leader副本都不再使用这个参数作为判断follower副本同步状态的依据。看到之后顿觉十分好奇于是抽出半天时间仔细研究了一下,终于弄明白了移除该参数的原因,特此记录一下。

首先我们来看一下这个参数本来的含义: If a replica falls more than this many messages behind the leader, the leader will remove the follower from ISR and treat it as dead. 即如果某个副本落后leader副本的消息数超过了这个值,那么leader副本就会把该follower副本从ISR中移除。Kafka 0.8.2.2的代码是这样使用该参数的:

val stuckReplicas = candidateReplicas.filter(r => (time.milliseconds - r.logEndOffsetUpdateTimeMs) > keepInSyncTimeMs)
val slowReplicas = candidateReplicas.filter(r =>
r.logEndOffset.messageOffset >= 0 &&
leaderLogEndOffset.messageOffset - r.logEndOffset.messageOffset > keepInSyncMessages) // keepInSyncMessages即replica.lag.max.messages的值

这段代码表明若分区leader副本的结束位移(以下皆称LEO, log end offset)与该follower副本LEO的差值超过了这个阈值,那么就会被视为slow副本,并加入到slowReplicas集合中。该集合中的所有副本都将被认为是与leader副本不同步(out of sync)。但是Kafka 0.9之后的代码变成了这个样子:

val laggingReplicas = candidateReplicas.filter(r => (time.milliseconds - r.lastCaughtUpTimeMs) > maxLagMs)

显然,新版本(0.9及以后)的Kafka只使用一个参数来确定滞后副本(lagging replica),而不再使用replica.lag.max.messages参数。这是因为什么原因呢?

在详细解释此事之前我们先明确一些公共的术语以方便后续的讨论:

  • AR:assigned replicas。通常情况下,每个分区都会被分配多个副本。具体的副本数量由参数offsets.topic.replication.factor指定。分区的AR数据保存在Zookeeper的/brokers/topics/<topic>节点中
  • ISR:in-sync replicas。与leader副本保持同步状态的副本集合(leader副本本身也在ISR中)。ISR数据保存在Zookeeper的/brokers/topics/<topic>/partitions/<partitionId>/state节点中
  • High Watermark:副本高水位值,简称HW,它表示该分区最新一条已提交消息(committed message)的位移
  • LEO:log end offset。从名字上来看似乎是日志结束位移,但其实是下一条消息的位移,即追加写下一条消息的位移

值得一提的,HW表示的是最新一条已提交消息的位移。注意这里是已提交的,说明这条消息已经完全备份过了(fully replicated),而LEO可能会比HW值大——因为对于分区的leader副本而言,它的日志随时会被追加写入新消息,而这些新消息很可能还没有被完全复制到其他follower副本上,所以LEO值可能会比HW值大。两者的关系可参考下图:

消费者只能消费到HW线以下的消息,即上图中绿色的部分;而紫色的消息就是未完全备份的消息,因而不能被消费者消费。

明白了这些术语之后,还有个问题需要研究下: follower部分与leader副本不同步,这是什么意思?不同步(out of sync)意味着follower副本无法追上leader副本的LEO,而这又是什么意思呢?我们举个简单的例子来说明。设想我们有一个topic,它只有一个分区,备份因子是3。假设这三个副本分别保存在broker1,broker2和broker3上。leader副本在broker1上,其他两个broker上的副本都是follower副本,且当前所有的副本都在ISR中。现在我们设置replica.lag.max.messages等于4——表示只要follower副本落后leader副本的消息数小于4,该follower副本就不会被踢出ISR。如果此时有个producer程序每次给这个topic发送3条消息,那么初始状态如下:

很显然,目前2个follower副本与leader副本是同步的,即它们都能追上leader副本的LEO。假设此时producer生产了1条新消息给leader副本,而同时broker3上的follower副本经历了一次Full GC,那么现在的日志状态如下图:

从上图可以发现,leader副本的HW值和LEO值已然变得不一样了。不过更重要的是,最新生产的这条消息是不会被视为“已提交”的,除非broker3被踢出ISR或者broker3上的follower副本追上了leader的LEO。由于replica.lag.max.messages=4,而broker3上的follower副本也只是落后leader副本1条消息,所以此时broker3上的副本并不满足条件因而也不会被踢出ISR。对于broker3上的副本而言,事情变得相当简单——只需追上leader的LEO即可。如果我们假设broker3因为Full GC停顿了100ms之后追上了leader的进度,那么此时的日志状态应该如下图所示:

此时一切都很完美了,leader的HW值与LEO值相同;2个follower副本都与leader副本是同步的。

那么有什么可能的原因会使得follower副本与leader副本不同步呢?归纳起来有三种原因:

  • 速度跟不上——follower副本在一段时间内都没法追上leader副本的消息写入速度,比如follower副本所在broker的网络IO开销过大导致备份消息的速度慢于从leader处获取消息的速度
  • 进程卡住了——follower副本在一段时间内根本就没有向leader副本发起FetchRequest请求(该请求就是获取消息数据),比如太过频繁的GC或其他失败导致
  • 新创建的——如果用户增加了备份因子,很显然新follower副本在启动过程初始肯定是全力追赶leader副本,因而与其是不同步的

replica.lag.max.messags参数就是用于检测第一种情况的。当然Kafka还提供了一个参数 replica.lag.time.max.ms来检测另外两种情况。比如如果设置 replica.lag.time.max.ms=500ms,只要follower副本每隔500ms都能发送FetchRequest请求给leader,那么该副本就不会被标记成dead从而被踢出ISR。

由于本文重点关注replica.lag.max.messages参数,那么我们来说一下Kafka检测第一种情况会碰到的问题。回到之前提到的那个例子,如果producer一次性发送消息的速率是2条/秒,即一个batch都有2条消息,那么显然设置replica.lag.max.messages=4是个相当安全且合适的数值。为什么? 因为在leader副本接收到producer发送过来的消息之后而follower副本开始备份这些消息之前,follower副本落后leader的消息数不会超过3条消息。但如果follower副本落后leader的消息数超过了3条,那么你肯定希望leader把这个特别慢的follower副本踢出ISR以防止增加producer消息生产的延时。从这个简单的例子上来看,这个参数似乎工作得很好,为什么要移除它呢?根本原因在于如果要正确设置这个参数的值,需要用户结合具体使用场景自己去评估——基于这个原因,新版本Kafka把这个参数移除了。

好了,我来详细解释一下这个根本原因。首先,对于一个参数的设置,有一点是很重要的:用户应该对他们知道的参数进行设置,而不是对他们需要进行猜测的参数进行设置。对于该参数来说,我们只能去猜它应该设置成哪些值,而不是根据我们的需要对其进行设置。为什么?举个例子,假设在刚才那个topic的环境中producer程序突然发起了一波消息生产的瞬时高峰流量增加,比如producer现在一次性发送4条消息过来了,也就是说与replica.lag.max.messages值相等了。此时,这两个follower副本都会被认为是与leader副本不同步了,从而被踢出ISR,具体日志状态如下图所示:

从上图看,这两个follower副本与leader不再同步,但其实他们都是存活状态(alive)的且没有任何性能问题。那么在下次FetchRequest时它们就能追上leader的LEO,并重新被加入ISR——于是就出现了这样的情况:它们不断地被踢出ISR然后重新加回ISR,造成了与leader不同步、再同步、又不同步、再次同步的情况发生。想想就知道这是多大的开销!问题的关键就在replica.lag.max.messages这个参数上。用户通过猜测设置该值,猜测producer的速度,猜测leader副本的入站流量。

可能有用户会说该参数默认值是4000,应该足够使用了吧。但有一点需要注意的是,这个参数是全局的!即所有topic都受到这个参数的影响。假设集群中有两个topic: t1和t2。假设它们的流量差异非常巨大,t1的消息生产者一次性生产5000条消息,直接就突破了4000这个默认值;而另一个topic,t2,它的消息生产者一次性生产10条消息,那么Kafka就需要相当长的时间才能辨别出t2各个分区中那些滞后的副本。很显然这种流量差异巨大的topic很容易地在同一个集群上部署,那么这种情况下replica.lag.max.messages参数应该设置什么值呢? 显然没有合适的值,对吧?

综上所述,新版本的Kafka去除了这个参数,改为只使用一个参数就能够同时检测由于slow以及由于进程卡壳而导致的滞后(lagging)——即follower副本落后leader副本的时间间隔。这个唯一的参数就是replica.lag.time.max.ms,默认是10秒。对于第2,3种不同步原因而言,该参数没有什么具体的变化。但是对于第一种情况,检测机制有了一些微调——如果一个follower副本落后leader的时间持续性地超过了这个阈值,那么这个副本就要被标记为dead从而被踢出ISR。这样即使出现刚刚提到的producer瞬时峰值流量,只要follower没有持续性地落后,它就不会反复地在ISR中移进移出。

最后说一句,这是Kafka副本调优的一个需求,具体的细节详见KIP-16 --- Automated Replica Lag Tuning

Kafka设计解析(九)为何去掉replica.lag.max.messages参数的更多相关文章

  1. Kafka副本管理—— 为何去掉replica.lag.max.messages参数

    今天查看Kafka 0.10.0的官方文档,发现了这样一句话:Configuration parameter replica.lag.max.messages was removed. Partiti ...

  2. Kafka设计解析(一)- Kafka背景及架构介绍

    本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/01/02/Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅 ...

  3. 揭秘Kafka高性能架构之道 - Kafka设计解析(六)

    原创文章,同步首发自作者个人博客.转载请务必在文章开头处以超链接形式注明出处http://www.jasongj.com/kafka/high_throughput/ 摘要 上一篇文章<Kafk ...

  4. Kafka设计解析(六)- Kafka高性能架构之道

    本文从宏观架构层面和微观实现层面分析了Kafka如何实现高性能.包含Kafka如何利用Partition实现并行处理和提供水平扩展能力,如何通过ISR实现可用性和数据一致性的动态平衡,如何使用NIO和 ...

  5. Kafka设计解析(六)Kafka高性能架构之道

    转载自 技术世界,原文链接 Kafka设计解析(六)- Kafka高性能架构之道 本文从宏观架构层面和微观实现层面分析了Kafka如何实现高性能.包含Kafka如何利用Partition实现并行处理和 ...

  6. Kafka设计解析(二)- Kafka High Availability (上)

    本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/04/24/KafkaColumn2 摘要 Kafka在0.8以前的版本中,并不提供High Av ...

  7. [Big Data - Kafka] Kafka设计解析(二):Kafka High Availability (上)

    Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦一个或多个Broker宕机,则宕机期间其上所有Partition都无法继续提供服务.若该Broker永远不能再恢复,亦 ...

  8. Kafka设计解析:Kafka High Availability

    Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦一个或多个Broker宕机,则宕机期间其上所有Partition都无法继续提供服务.若该Broker永远不能再恢复,亦 ...

  9. Kafka设计解析(二):Kafka High Availability (上)

    转自:http://www.infoq.com/cn/articles/kafka-analysis-part-2/ Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦 ...

随机推荐

  1. js实现链式操作

    前言:前不久阿里远程面试时问了我一个问题,如下: function Person(){}; var person = new Person(); //实现person.set(10).get()返回2 ...

  2. Django基础九之中间件

    一 前戏 我们在前面的课程中已经学会了给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面.我们通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可能也需要加上 ...

  3. 转:PHP中的使用curl发送请求(GET请求和POST请求)

    原文地址:http://www.jb51.net/article/104974.htm 使用CURL发送请求的基本流程 使用CURL的PHP扩展完成一个HTTP请求的发送一般有以下几个步骤: 1.初始 ...

  4. Html5不可见标签,及标签属性(元素对象属性) a href target name id 相对路径

    标签属性分类(元素对象属性) 不可见标签与可见标签: <head></head>        属于不可见标签, 里面的内容一般用于css还有全局的一些变量,声明等. 而且如果 ...

  5. github上手实践教程

    简介: SSH公私钥的使用 github的使用 git 工具的基本使用 基本步骤: 一.github的使用 1.github账号的创建[官网一步一步创建就行了,这一步骤省略] 2.创建远程仓库: 创建 ...

  6. ubuntu命令行编译opencv c++项目

    ubuntu终端编译opencv c++项目: g++ test.cpp `pkg-config opencv --libs --cflags opencv` -o test

  7. Keras & Theano 输出中间层结果

    Keras & Theano get output of an intermediate layer 1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要 ...

  8. 以local模式使用Xshell+Xmanager远程监控jvisualvm

    使用jvisualvm的remote方式监控服务器端jvisualvm时,不是很方便,因此通过local方式,应该是正路. 一.服务器端(Linux,最小安装模式,没有图形界面) 1.安装xauth ...

  9. wmware中网络设置技巧

    wmware中网络的三种方式: .............................................. (1)桥接模式: 将主机网卡与虚拟机虚拟的网卡利用虚拟网桥进行通信. 默认 ...

  10. Sql Server中的谓词和运算符

    谓词和运算符配合使用是我们得到理想数据的最佳途径. 一.浅谈谓词 谓词的概念:一个运算结果为True.False或Unknown的逻辑表达式.它的运用范围有:where子句.Having子句.Chec ...