920. Number of Music Playlists
Your music player contains
N
different songs and she wants to listen toL
(not necessarily different) songs during your trip. You create a playlist so that:
- Every song is played at least once
- A song can only be played again only if
K
other songs have been playedReturn the number of possible playlists. As the answer can be very large, return it modulo
10^9 + 7
.
Example 1:
Input: N = 3, L = 3, K = 1
Output: 6
Explanation: There are 6 possible playlists. [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].Example 2:
Input: N = 2, L = 3, K = 0
Output: 6
Explanation: There are 6 possible playlists. [1, 1, 2], [1, 2, 1], [2, 1, 1], [2, 2, 1], [2, 1, 2], [1, 2, 2]Example 3:
Input: N = 2, L = 3, K = 1
Output: 2
Explanation: There are 2 possible playlists. [1, 2, 1], [2, 1, 2]
Note:
0 <= K < N <= L <= 100
Approach #1: DP. [C++]
class Solution {
public int numMusicPlaylists(int N, int L, int K) {
int mod = (int)Math.pow(10, 9) + 7;
long[][] dp = new long[L+1][N+1];
dp[0][0] = 1;
for (int i = 1; i <= L; ++i) {
for (int j = 1; j <= N; ++j) {
dp[i][j] = (dp[i-1][j-1] * (N - (j - 1))) % mod;
if (j > K) {
dp[i][j] = (dp[i][j] + (dp[i-1][j] * (j - K)) % mod) % mod;
}
}
}
return (int)dp[L][N];
}
}
Analysis:
dp[i][j] denotes the solution of i songs with j difference songs. So the final answer should be dp[L][N]
Think one step before the last one, there are only cases for the answer of dp[i][j]
case 1 (the last added one is new song): listen i - 1 songs with j - 1 difference songs, then the last one is definitely new song with the choices of N - (j - 1).
case2 (the last added one is old song): listen i - 1 songs with j different songs, then the last one is definitely old song with the choices of j if without the constraint of K, the status equation will be dp[i][j] = dp[i-1][j-1] * (N - (j - 1)) + dp[i-1][j] * j
If with the constaint of K, there are also two cases
Case 1: no changes since the last added one is new song. Hence, there is no conflict
Case 2: now we don't have choices of j for the last added old song. Itt should be updateed j - k because k songs can't be chsed from j - 1 to j - k. However, if j <= K, this case will be 0 because only after choosing K different other songs, old song can be chosen.
if (j > k)
dp[i][j] = dp[i-1][j-1] * (N-(j-1)) + dp[i-1][j] * (j-k)
else
dp[i][j] = dp[i-1][j-1] * (N - (j-1))
Reference:
920. Number of Music Playlists的更多相关文章
- [LeetCode] 920. Number of Music Playlists 音乐播放列表的个数
Your music player contains N different songs and she wants to listen to L (not necessarily different ...
- [Swift]LeetCode920. 播放列表的数量 | Number of Music Playlists
Your music player contains N different songs and she wants to listen to L (not necessarily different ...
- leetcode hard
# Title Solution Acceptance Difficulty Frequency 4 Median of Two Sorted Arrays 27.2% Hard ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- COM Error Code(HRESULT)部分摘录
Return value/code Description 0x00030200 STG_S_CONVERTED The underlying file was converted to compou ...
- C#开发BIMFACE系列44 服务端API之计算图纸对比差异项来源自哪个图框
BIMFACE二次开发系列目录 [已更新最新开发文章,点击查看详细] 在前两篇博客<C#开发BIMFACE系列42 服务端API之图纸对比>.<C#开发BIMFACE系列43 ...
- QNX 多线程 (线程1每隔20ms读取 number;线程2每隔10ms计算一次)
#include <pthread.h>#include <stdio.h>#include <sys/time.h>#include <string.h&g ...
- JavaScript Math和Number对象
目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...
- Harmonic Number(调和级数+欧拉常数)
题意:求f(n)=1/1+1/2+1/3+1/4-1/n (1 ≤ n ≤ 108).,精确到10-8 (原题在文末) 知识点: 调和级数(即f(n))至今没有一个完全正确的公式, ...
随机推荐
- 在java工程中导入jar包的注意事项
在java工程中导入jar包后一定要bulid path,不然jar包不可以用.而在java web工程中导入jar包后可以不builld path,但最好builld path.
- binlog怎样参与mysql recover的
转自 Louis Hust's Blog MySQL两阶段提交 29 July 2015 参数介绍 两阶段提交 什么情况下会出现binlog写入了,但是实际这条数据不存在库中? 参数介绍 innod ...
- forbidden
- tomcat 启动报 找不到 StrutsPrepareAndExecuteFilter。。
<?xml version="1.0" encoding="UTF-8"?><web-app xmlns:xsi="http://w ...
- HTML5 APP应用实现图片上传及拍照上传功能
https://blog.csdn.net/zmzwll1314/article/details/46965663 http://www.cnblogs.com/leo0705/ https://zh ...
- iOS沙盒机制介绍
一.沙盒机制 沙盒的概念:沙盒是每一个iOS应用程序都会自动创建的一个文件系统目录(文件夹),而且沙盒还具有独立.封闭.安全的特点. 沙盒机制 iOS中的沙盒不仅仅是一个文件目录,TA其实更是一种安全 ...
- [转载红鱼儿]Delphi实现微信开发(3)如何使用multipart/form-data格式上传文件
开始前,先看下要实现的微信接口,上传多媒体文件,这个接口是用Form表单形式上传的文件.对我来说,对http的Form表单一知半解,还好,查到这个资料,如果你也和我一样,必须看看这篇文章. 在xali ...
- js限制上传图片类型和大小
<script type="text/javascript"> function checkFile(brandLogo){ var file=brandLogo.va ...
- 深入浅析JavaScript中with语句的理解
JavaScript 有个 with 关键字, with 语句的原本用意是为逐级的对象访问提供命名空间式的速写方式. 也就是在指定的代码区域, 直接通过节点名称调用对象. with语句的作用是暂时改变 ...
- mac windows蓝牙问题
如果是win7.win8或win10三者的64位版本,可以下载驱动解决:http://file2.mydrivers.com/2014/notebook/apple_broadcom_bluetoot ...