Your music player contains N different songs and she wants to listen to L (not necessarily different) songs during your trip.  You create a playlist so that:

  • Every song is played at least once
  • A song can only be played again only if K other songs have been played

Return the number of possible playlists.  As the answer can be very large, return it modulo 10^9 + 7.

Example 1:

Input: N = 3, L = 3, K = 1
Output: 6
Explanation: There are 6 possible playlists. [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].

Example 2:

Input: N = 2, L = 3, K = 0
Output: 6
Explanation: There are 6 possible playlists. [1, 1, 2], [1, 2, 1], [2, 1, 1], [2, 2, 1], [2, 1, 2], [1, 2, 2]

Example 3:

Input: N = 2, L = 3, K = 1
Output: 2
Explanation: There are 2 possible playlists. [1, 2, 1], [2, 1, 2]

Note:

    1. 0 <= K < N <= L <= 100

Approach #1: DP. [C++]

class Solution {
public int numMusicPlaylists(int N, int L, int K) {
int mod = (int)Math.pow(10, 9) + 7;
long[][] dp = new long[L+1][N+1];
dp[0][0] = 1;
for (int i = 1; i <= L; ++i) {
for (int j = 1; j <= N; ++j) {
dp[i][j] = (dp[i-1][j-1] * (N - (j - 1))) % mod;
if (j > K) {
dp[i][j] = (dp[i][j] + (dp[i-1][j] * (j - K)) % mod) % mod;
}
}
}
return (int)dp[L][N];
}
}

  

Analysis:

dp[i][j] denotes the solution of i songs with j difference songs. So the final answer should be dp[L][N]

Think one step before the last one, there are only cases for the answer of dp[i][j]

case 1 (the last added one is new song): listen i - 1 songs with j - 1 difference songs, then the last one is definitely new song with the choices of N - (j - 1).

case2 (the last added one is old song): listen i - 1 songs with j different songs, then the last one is definitely old song with the choices of j if without the constraint of K, the status equation will be dp[i][j] = dp[i-1][j-1] * (N - (j - 1)) + dp[i-1][j] * j

If with the constaint of K, there are also two cases

Case 1: no changes since the last added one is new song. Hence, there is no conflict

Case 2: now we don't have choices of j for the last added old song. Itt should be updateed j - k because k songs can't be chsed from j - 1 to j - k. However, if j <= K, this case will be 0 because only after choosing K different other songs, old song can be chosen.

if (j > k)

dp[i][j] = dp[i-1][j-1] * (N-(j-1)) + dp[i-1][j] * (j-k)

else

dp[i][j] = dp[i-1][j-1] * (N - (j-1))

Reference:

https://leetcode.com/problems/number-of-music-playlists/discuss/180338/DP-solution-that-is-Easy-to-understand

920. Number of Music Playlists的更多相关文章

  1. [LeetCode] 920. Number of Music Playlists 音乐播放列表的个数

    Your music player contains N different songs and she wants to listen to L (not necessarily different ...

  2. [Swift]LeetCode920. 播放列表的数量 | Number of Music Playlists

    Your music player contains N different songs and she wants to listen to L (not necessarily different ...

  3. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

  4. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  5. COM Error Code(HRESULT)部分摘录

    Return value/code Description 0x00030200 STG_S_CONVERTED The underlying file was converted to compou ...

  6. C#开发BIMFACE系列44 服务端API之计算图纸对比差异项来源自哪个图框

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前两篇博客<C#开发BIMFACE系列42 服务端API之图纸对比>.<C#开发BIMFACE系列43 ...

  7. QNX 多线程 (线程1每隔20ms读取 number;线程2每隔10ms计算一次)

    #include <pthread.h>#include <stdio.h>#include <sys/time.h>#include <string.h&g ...

  8. JavaScript Math和Number对象

    目录 1. Math 对象:数学对象,提供对数据的数学计算.如:获取绝对值.向上取整等.无构造函数,无法被初始化,只提供静态属性和方法. 2. Number 对象 :Js中提供数字的对象.包含整数.浮 ...

  9. Harmonic Number(调和级数+欧拉常数)

    题意:求f(n)=1/1+1/2+1/3+1/4-1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末) 知识点:      调和级数(即f(n))至今没有一个完全正确的公式, ...

随机推荐

  1. 在java工程中导入jar包的注意事项

    在java工程中导入jar包后一定要bulid path,不然jar包不可以用.而在java web工程中导入jar包后可以不builld path,但最好builld path.

  2. binlog怎样参与mysql recover的

    转自  Louis Hust's Blog MySQL两阶段提交 29 July 2015 参数介绍 两阶段提交 什么情况下会出现binlog写入了,但是实际这条数据不存在库中? 参数介绍 innod ...

  3. forbidden

  4. tomcat 启动报 找不到 StrutsPrepareAndExecuteFilter。。

    <?xml version="1.0" encoding="UTF-8"?><web-app xmlns:xsi="http://w ...

  5. HTML5 APP应用实现图片上传及拍照上传功能

    https://blog.csdn.net/zmzwll1314/article/details/46965663 http://www.cnblogs.com/leo0705/ https://zh ...

  6. iOS沙盒机制介绍

    一.沙盒机制 沙盒的概念:沙盒是每一个iOS应用程序都会自动创建的一个文件系统目录(文件夹),而且沙盒还具有独立.封闭.安全的特点. 沙盒机制 iOS中的沙盒不仅仅是一个文件目录,TA其实更是一种安全 ...

  7. [转载红鱼儿]Delphi实现微信开发(3)如何使用multipart/form-data格式上传文件

    开始前,先看下要实现的微信接口,上传多媒体文件,这个接口是用Form表单形式上传的文件.对我来说,对http的Form表单一知半解,还好,查到这个资料,如果你也和我一样,必须看看这篇文章. 在xali ...

  8. js限制上传图片类型和大小

    <script type="text/javascript"> function checkFile(brandLogo){ var file=brandLogo.va ...

  9. 深入浅析JavaScript中with语句的理解

    JavaScript 有个 with 关键字, with 语句的原本用意是为逐级的对象访问提供命名空间式的速写方式. 也就是在指定的代码区域, 直接通过节点名称调用对象. with语句的作用是暂时改变 ...

  10. mac windows蓝牙问题

    如果是win7.win8或win10三者的64位版本,可以下载驱动解决:http://file2.mydrivers.com/2014/notebook/apple_broadcom_bluetoot ...