红黑树的实现——c++
红黑树介绍参考上一篇。
1. 基本定义
enum RBTColor{RED, BLACK}; template <class T>
class RBTNode{
public:
RBTColor color; // 颜色
T key; // 关键字(键值)
RBTNode *left; // 左孩子
RBTNode *right; // 右孩子
RBTNode *parent; // 父结点 RBTNode(T value, RBTColor c, RBTNode *p, RBTNode *l, RBTNode *r):
key(value),color(c),parent(),left(l),right(r) {}
}; template <class T>
class RBTree {
private:
RBTNode<T> *mRoot; // 根结点 public:
RBTree();
~RBTree(); // 前序遍历"红黑树"
void preOrder();
// 中序遍历"红黑树"
void inOrder();
// 后序遍历"红黑树"
void postOrder(); // (递归实现)查找"红黑树"中键值为key的节点
RBTNode<T>* search(T key);
// (非递归实现)查找"红黑树"中键值为key的节点
RBTNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
RBTNode<T>* successor(RBTNode<T> *x);
// 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
RBTNode<T>* predecessor(RBTNode<T> *x); // 将结点(key为节点键值)插入到红黑树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁红黑树
void destroy(); // 打印红黑树
void print();
private:
// 前序遍历"红黑树"
void preOrder(RBTNode<T>* tree) const;
// 中序遍历"红黑树"
void inOrder(RBTNode<T>* tree) const;
// 后序遍历"红黑树"
void postOrder(RBTNode<T>* tree) const; // (递归实现)查找"红黑树x"中键值为key的节点
RBTNode<T>* search(RBTNode<T>* x, T key) const;
// (非递归实现)查找"红黑树x"中键值为key的节点
RBTNode<T>* iterativeSearch(RBTNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的红黑树的最小结点。
RBTNode<T>* minimum(RBTNode<T>* tree);
// 查找最大结点:返回tree为根结点的红黑树的最大结点。
RBTNode<T>* maximum(RBTNode<T>* tree); // 左旋
void leftRotate(RBTNode<T>* &root, RBTNode<T>* x);
// 右旋
void rightRotate(RBTNode<T>* &root, RBTNode<T>* y);
// 插入函数
void insert(RBTNode<T>* &root, RBTNode<T>* node);
// 插入修正函数
void insertFixUp(RBTNode<T>* &root, RBTNode<T>* node);
// 删除函数
void remove(RBTNode<T>* &root, RBTNode<T> *node);
// 删除修正函数
void removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent); // 销毁红黑树
void destroy(RBTNode<T>* &tree); // 打印红黑树
void print(RBTNode<T>* tree, T key, int direction); #define rb_parent(r) ((r)->parent)
#define rb_color(r) ((r)->color)
#define rb_is_red(r) ((r)->color==RED)
#define rb_is_black(r) ((r)->color==BLACK)
#define rb_set_black(r) do { (r)->color = BLACK; } while (0)
#define rb_set_red(r) do { (r)->color = RED; } while (0)
#define rb_set_parent(r,p) do { (r)->parent = (p); } while (0)
#define rb_set_color(r,c) do { (r)->color = (c); } while (0)
};
RBTNode是红黑树的节点类,而RBTree对应是红黑树的操作实现类。在RBTree中包含了根节点mRoot和红黑树的相关API。
注意:(01) 在实现红黑树API的过程中,我重载了许多函数。重载的原因,一是因为有的API是内部接口,有的是外部接口;二是为了让结构更加清晰。
(02) 由于C++的实现是在上一篇介绍的"C语言"实现基础上移植而来,在该代码中,保留了一些C语言的特性;例如(宏定义)。
2. 左旋
对x进行左旋,意味着"将x变成一个左节点"。
/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)--> / \ #
* lx y x ry
* / \ / \
* ly ry lx ly
*
*
*/
template <class T>
void RBTree<T>::leftRotate(RBTNode<T>* &root, RBTNode<T>* x)
{
// 设置x的右孩子为y
RBTNode<T> *y = x->right; // 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x->right = y->left;
if (y->left != NULL)
y->left->parent = x; // 将 “x的父亲” 设为 “y的父亲”
y->parent = x->parent; if (x->parent == NULL)
{
root = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
}
else
{
if (x->parent->left == x)
x->parent->left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x->parent->right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
} // 将 “x” 设为 “y的左孩子”
y->left = x;
// 将 “x的父节点” 设为 “y”
x->parent = y;
}
3. 右旋
对y进行左旋,意味着"将y变成一个右节点"。
/*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)--> / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
template <class T>
void RBTree<T>::rightRotate(RBTNode<T>* &root, RBTNode<T>* y)
{
// 设置x是当前节点的左孩子。
RBTNode<T> *x = y->left; // 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y->left = x->right;
if (x->right != NULL)
x->right->parent = y; // 将 “y的父亲” 设为 “x的父亲”
x->parent = y->parent; if (y->parent == NULL)
{
root = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
}
else
{
if (y == y->parent->right)
y->parent->right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y->parent->left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
} // 将 “y” 设为 “x的右孩子”
x->right = y; // 将 “y的父节点” 设为 “x”
y->parent = x;
}
4. 添加
/*
* 将结点插入到红黑树中
*
* 参数说明:
* root 红黑树的根结点
* node 插入的结点 // 对应《算法导论》中的node
*/
template <class T>
void RBTree<T>::insert(RBTNode<T>* &root, RBTNode<T>* node)
{
RBTNode<T> *y = NULL;
RBTNode<T> *x = root; // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != NULL)
{
y = x;
if (node->key < x->key)
x = x->left;
else
x = x->right;
} node->parent = y;
if (y!=NULL)
{
if (node->key < y->key)
y->left = node;
else
y->right = node;
}
else
root = node; // 2. 设置节点的颜色为红色
node->color = RED; // 3. 将它重新修正为一颗二叉查找树
insertFixUp(root, node);
} /*
* 将结点(key为节点键值)插入到红黑树中
*
* 参数说明:
* tree 红黑树的根结点
* key 插入结点的键值
*/
template <class T>
void RBTree<T>::insert(T key)
{
RBTNode<T> *z=NULL; // 如果新建结点失败,则返回。
if ((z=new RBTNode<T>(key,BLACK,NULL,NULL,NULL)) == NULL)
return ; insert(mRoot, z);
}
内部接口 -- insert(root, node)的作用是将"node"节点插入到红黑树中。其中,root是根,node是被插入节点。
外部接口 -- insert(key)的作用是将"key"添加到红黑树中。
添加修正操作的实现代码
/*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* root 红黑树的根
* node 插入的结点 // 对应《算法导论》中的z
*/
template <class T>
void RBTree<T>::insertFixUp(RBTNode<T>* &root, RBTNode<T>* node)
{
RBTNode<T> *parent, *gparent; // 若“父节点存在,并且父节点的颜色是红色”
while ((parent = rb_parent(node)) && rb_is_red(parent))
{
gparent = rb_parent(parent); //若“父节点”是“祖父节点的左孩子”
if (parent == gparent->left)
{
// Case 1条件:叔叔节点是红色
{
RBTNode<T> *uncle = gparent->right;
if (uncle && rb_is_red(uncle))
{
rb_set_black(uncle);
rb_set_black(parent);
rb_set_red(gparent);
node = gparent;
continue;
}
} // Case 2条件:叔叔是黑色,且当前节点是右孩子
if (parent->right == node)
{
RBTNode<T> *tmp;
leftRotate(root, parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是左孩子。
rb_set_black(parent);
rb_set_red(gparent);
rightRotate(root, gparent);
}
else//若“z的父节点”是“z的祖父节点的右孩子”
{
// Case 1条件:叔叔节点是红色
{
RBTNode<T> *uncle = gparent->left;
if (uncle && rb_is_red(uncle))
{
rb_set_black(uncle);
rb_set_black(parent);
rb_set_red(gparent);
node = gparent;
continue;
}
} // Case 2条件:叔叔是黑色,且当前节点是左孩子
if (parent->left == node)
{
RBTNode<T> *tmp;
rightRotate(root, parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是右孩子。
rb_set_black(parent);
rb_set_red(gparent);
leftRotate(root, gparent);
}
} // 将根节点设为黑色
rb_set_black(root);
}
insertFixUp(root, node)的作用是对应"上面所讲的第三步"。它是一个内部接口。
5. 删除
/*
* 删除结点(node),并返回被删除的结点
*
* 参数说明:
* root 红黑树的根结点
* node 删除的结点
*/
template <class T>
void RBTree<T>::remove(RBTNode<T>* &root, RBTNode<T> *node)
{
RBTNode<T> *child, *parent;
RBTColor color; // 被删除节点的"左右孩子都不为空"的情况。
if ( (node->left!=NULL) && (node->right!=NULL) )
{
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
RBTNode<T> *replace = node; // 获取后继节点
replace = replace->right;
while (replace->left != NULL)
replace = replace->left; // "node节点"不是根节点(只有根节点不存在父节点)
if (rb_parent(node))
{
if (rb_parent(node)->left == node)
rb_parent(node)->left = replace;
else
rb_parent(node)->right = replace;
}
else
// "node节点"是根节点,更新根节点。
root = replace; // child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace->right;
parent = rb_parent(replace);
// 保存"取代节点"的颜色
color = rb_color(replace); // "被删除节点"是"它的后继节点的父节点"
if (parent == node)
{
parent = replace;
}
else
{
// child不为空
if (child)
rb_set_parent(child, parent);
parent->left = child; replace->right = node->right;
rb_set_parent(node->right, replace);
} replace->parent = node->parent;
replace->color = node->color;
replace->left = node->left;
node->left->parent = replace; if (color == BLACK)
removeFixUp(root, child, parent); delete node;
return ;
} if (node->left !=NULL)
child = node->left;
else
child = node->right; parent = node->parent;
// 保存"取代节点"的颜色
color = node->color; if (child)
child->parent = parent; // "node节点"不是根节点
if (parent)
{
if (parent->left == node)
parent->left = child;
else
parent->right = child;
}
else
root = child; if (color == BLACK)
removeFixUp(root, child, parent);
delete node;
} /*
* 删除红黑树中键值为key的节点
*
* 参数说明:
* tree 红黑树的根结点
*/
template <class T>
void RBTree<T>::remove(T key)
{
RBTNode<T> *node; // 查找key对应的节点(node),找到的话就删除该节点
if ((node = search(mRoot, key)) != NULL)
remove(mRoot, node);
}
内部接口 -- remove(root, node)的作用是将"node"节点插入到红黑树中。其中,root是根,node是被插入节点。
外部接口 -- remove(key)删除红黑树中键值为key的节点。
删除修正操作的实现代码
/*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* root 红黑树的根
* node 待修正的节点
*/
template <class T>
void RBTree<T>::removeFixUp(RBTNode<T>* &root, RBTNode<T> *node, RBTNode<T> *parent)
{
RBTNode<T> *other; while ((!node || rb_is_black(node)) && node != root)
{
if (parent->left == node)
{
other = parent->right;
if (rb_is_red(other))
{
// Case 1: x的兄弟w是红色的
rb_set_black(other);
rb_set_red(parent);
leftRotate(root, parent);
other = parent->right;
}
if ((!other->left || rb_is_black(other->left)) &&
(!other->right || rb_is_black(other->right)))
{
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
rb_set_red(other);
node = parent;
parent = rb_parent(node);
}
else
{
if (!other->right || rb_is_black(other->right))
{
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
rb_set_black(other->left);
rb_set_red(other);
rightRotate(root, other);
other = parent->right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
rb_set_color(other, rb_color(parent));
rb_set_black(parent);
rb_set_black(other->right);
leftRotate(root, parent);
node = root;
break;
}
}
else
{
other = parent->left;
if (rb_is_red(other))
{
// Case 1: x的兄弟w是红色的
rb_set_black(other);
rb_set_red(parent);
rightRotate(root, parent);
other = parent->left;
}
if ((!other->left || rb_is_black(other->left)) &&
(!other->right || rb_is_black(other->right)))
{
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
rb_set_red(other);
node = parent;
parent = rb_parent(node);
}
else
{
if (!other->left || rb_is_black(other->left))
{
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
rb_set_black(other->right);
rb_set_red(other);
leftRotate(root, other);
other = parent->left;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
rb_set_color(other, rb_color(parent));
rb_set_black(parent);
rb_set_black(other->left);
rightRotate(root, parent);
node = root;
break;
}
}
}
if (node)
rb_set_black(node);
}
removeFixup(root, node, parent)是对应"上面所讲的第三步"。它是一个内部接口。
本文来自http://www.cnblogs.com/skywang12345/p/3624291.html
红黑树的实现——c++的更多相关文章
- 红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极 ...
- jdk源码分析红黑树——插入篇
红黑树是自平衡的排序树,自平衡的优点是减少遍历的节点,所以效率会高.如果是非平衡的二叉树,当顺序或逆序插入的时候,查找动作很可能会遍历n个节点 红黑树的规则很容易理解,但是维护这个规则难. 一.规则 ...
- 谈c++ pb_ds库(二) 红黑树大法好
厉害了,没想到翻翻pb_ds库看到这么多好东西,封装好的.现成的splay.红黑树.avl... 即使不能在考场上使用也可以用来对拍哦 声明/头文件 #include <ext/pb_ds/tr ...
- 定时器管理:nginx的红黑树和libevent的堆
libevent 发生超时后, while循环一次从堆顶del timer——直到最新调整的最小堆顶不是超时事件为止,(实际是del event),但是会稍后把这个timeout的 event放到ac ...
- 从2-3-4树到红黑树(下) Java与C的实现
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 相关博客: 从2-3-4树到红黑树(上) 从2-3-4树到红黑树(中) 1. 实现技 ...
- 红黑树/B+树/AVL树
RB Tree 红黑树 :http://blog.csdn.net/very_2/article/details/5722682 Nginx的RBTree实现 :http://blog.csdn ...
- 论AVL树与红黑树
首先讲解一下AVL树: 例如,我们要输入这样一串数字,10,9,8,7,15,20这样一串数字来建立AVL树 1,首先输入10,得到一个根结点10 2,然后输入9, 得到10这个根结点一个左孩子结点9 ...
- DataStructure——红黑树学习笔记
1.前言 本文伪码和解释参考: http://blog.csdn.net/v_JULY_v/article/details/6105630 C实现的源码本文未贴出,请见: http://blog.cs ...
- 红黑树(Red-Black tree)
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗自平衡的排序二叉树.我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小 ...
- map,hash_map, hash_table, 红黑树 的原理和使用
在刷算法题的时候总是碰到好多题,号称可以用hash table来解题.然后就蒙圈了. 1.首先,map和hash_map的区别和使用: (1)map底层用红黑树实现,hash_map底层用hash_t ...
随机推荐
- JavaScript 中的 NaN 和 isNaN
1.NaN NaN 即 Not a Number , 不是一个数字.那么 NaN 到底是什么呢? 在 JavaScript 中,整数和浮点数都统称为 Number 类型 .除此之外,Number 类型 ...
- Underscore模版引擎的使用-template方法
之前项目里有遇到在DOM中增加大量的html结构的时候,傻乎乎的在js中写一堆模版,然后用replace一个一个做替换.当时就是难看了点,不觉得啥,现在了解了模版引擎之后回头来看真的比较捉急了,以后是 ...
- 结构体的sort【防止遗忘w】
#include<iostream> #include<algorithm> using namespace std; int n; struct jie { int num; ...
- 21个ui设计技巧,让你的设计不落伍
1.功能性极简主义 不少移动端APP和网站开始基于极简主义设计风来设计,而极简主义本身并非关注所有的信息,而是通过减少非关键信息来突出特定的内容,它是有着极强的功能性和偏向的.它有着如下的特征: ・简 ...
- SEO方式之HTTPS 访问优化详解
SEO到底要不要做HTTPS?HTTPS对SEO的重要性 正方观点 1.HTTPS具有更好的加密性能,避免用户信息泄露: 2.HTTPS复杂的传输方式,降低网站被劫持的风险: 3.搜索引擎已经全面支持 ...
- 2018.10.02 NOIP模拟 序列维护(线段树+广义欧拉定理)
传送门 一道比较好的线段树. 考试时线性筛打错了于是弃疗. 60分暴力中有20分的快速幂乘爆了于是最后40分滚粗. 正解并不难想. 每次区间加打懒标记就行了. 区间查询要用到广义欧拉定理. 我们会发现 ...
- 2018.09.09 codeforces280C. Game on Tree(期望dp)
传送门 期望dp经典题. 显然只需要算出每个点被染黑的期望步数. 点i被染黑的期望是1/(1到i这条链上的节点数)" role="presentation" style= ...
- linxu ssh 双端认证 不成功之authorized_keys
linxu ssh 双端认证 不成功之authorized_keys liunx双端认证可以让我们更简便的在两台服务器之间传输文件,配置暂且不说,网上有大部分的文章可以搜索到,今天我要说的是在不成功的 ...
- x+y+z=n的正整数解
题:x+y+z=n,其中(n>=3),求x,y,z的正整数解的个数根据图象法:x>=1,y>=1,x+y<=n-1
- post异步请求
//创建url NSURL *url = [[NSURL alloc] initWithString:@"http://api.hudong.com/iphonexml.do"]; ...