POJ - 3111 K Best 0-1分数规划 二分
Time Limit: 8000MS | Memory Limit: 65536K | |
Total Submissions: 12812 | Accepted: 3290 | |
Case Time Limit: 2000MS | Special Judge |
Description
Demy has n jewels. Each of her jewels has some value vi and weight wi.
Since her husband John got broke after recent financial crises, Demy has decided to sell some jewels. She has decided that she would keep k best jewels for herself. She decided to keep such jewels that their specific value is as large as possible. That is, denote the specific value of some set of jewels S = {i1, i2, …, ik} as
.
Demy would like to select such k jewels that their specific value is maximal possible. Help her to do so.
Input
The first line of the input file contains n — the number of jewels Demy got, and k — the number of jewels she would like to keep (1 ≤ k ≤ n ≤ 100 000).
The following n lines contain two integer numbers each — vi and wi (0 ≤ vi ≤ 106, 1 ≤ wi ≤ 106, both the sum of all vi and the sum of all wi do not exceed 107).
Output
Output k numbers — the numbers of jewels Demy must keep. If there are several solutions, output any one.
Sample Input
3 2
1 1
1 2
1 3
Sample Output
1 2
Source
#include<stdio.h>
#include<algorithm>
using namespace std; #define exp 1e-8
struct jew{
int id;
double y;
}num[1000005];
double v[1000005], w[1000005];
bool cmp(jew a, jew b)
{
return a.y > b.y;
} bool dis(double x, int n, int k)
{
int i;
double sum = 0;
for (i = 0; i < n; i++)
{
num[i].y = v[i] - x*w[i];
num[i].id = i + 1;
}
sort(num, num + n, cmp);
for (i = 0; i < k; i++)
{
sum += num[i].y;
}
return sum >= 0;
}
int main()
{
int n, k;
while (~scanf("%d %d", &n, &k))
{
for (int i = 0; i < n; i++)
{
scanf("%lf %lf", &v[i], &w[i]);
}
double left = 0, right = 1e6;
double mid;
while (right - left>=exp)
{
mid = (left + right) / 2;
if (dis(mid, n, k))
{
left = mid;
}
else
{
right = mid;
}
}
for (int i = 0; i < k - 1; i++)
{
printf("%d ", num[i].id);
}
printf("%d\n", num[k - 1].id);
} return 0;
}
POJ - 3111 K Best 0-1分数规划 二分的更多相关文章
- POJ 3111 K Best(01分数规划)
K Best Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 9876 Accepted: 2535 Case Time ...
- POJ - 2976 Dropping tests && 0/1 分数规划
POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...
- poj 2976 Dropping tests 0/1分数规划
0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...
- POJ 2976 Dropping tests 【01分数规划+二分】
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- LOJ149 0/1分数规划
竟然没有写过分数规划的题解 考前挣扎一发板子( 二分答案k 然后0/1分数规划的方法就是 分母乘过去然后贪心解决 注意实数二分的精度 一般估计一个次数比较好不然容易出现精度比较误差[惨痛教训 就做完了 ...
- POJ 2976 Dropping tests【0/1分数规划模板】
传送门:http://poj.org/problem?id=2976 题意:给出组和,去掉对数据,使得的总和除以的总和最大. 思路:0/1分数规划 设,则(其中等于0或1) 开始假设使得上式成立,将从 ...
- POJ2976 题解 0/1分数规划入门题 二分
题目链接:http://poj.org/problem?id=2976 关于 0/1分数规划 参见 这篇博客 实现代码如下: #include <cstdio> #include < ...
- poj 3111 K Best 最大化平均值 二分思想
poj 3111 K Best 最大化平均值 二分思想 题目链接: http://poj.org/problem?id=3111 思路: 挑战程序竞赛书上讲的很好,下面的解释也基本来源于此书 设定条件 ...
- LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
随机推荐
- Java并发编程原理与实战七:线程带来的风险
在并发中有两种方式,一是多进程,二是多线程,但是线程相比进程花销更小且能共享资源.但使用多线程同时会带来相应的风险,本文将展开讨论. 一.引言 多线程将会带来几个问题: 1.安全性问题 线程安全性可能 ...
- [转载]strtok函数和strtok_r函数
1.一个应用实例 网络上一个比较经典的例子是将字符串切分,存入结构体中.如,现有结构体 typedef struct person{ char name[25]; char sex[1 ...
- Asp.Net使用加密cookie代替session验证用户登录状态 源码分享
首先 session 和 cache 拥有各自的优势而存在. 他们的优劣就不在这里讨论了. 本实例仅存储用户id于用户名,对于多级权限的架构,可以自行修改增加权限字段 本实例采用vs2010编写 ...
- 20155225 2016-2017-2 《Java程序设计》第七周学习总结
20155225 2016-2017-2 <Java程序设计>第七周学习总结 教材学习内容总结 java提供的时间处理API 认识时间与日期,时间日期处理不是我想象中那么简单的问题,涉及地 ...
- HDU 4707 Pet 邻接表实现
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4707 解题报告:题目大意是在无向图G中有n个点,分别从0 到n-1编号,然后在这些点之间有n-1条边, ...
- POJ 2438 Children’s Dining (哈密顿图模板题之巧妙建反图 )
题目链接 Description Usually children in kindergarten like to quarrel with each other. This situation an ...
- 常见踩坑案例(二)-Request method 'POST' not supported
一 前言 最近涉及到与前后端的数据对接,按道理来说没一点压力结果被一前端童鞋带坑里去了(不过也是很久没写过这种前后端分离进行联调的事情了,如果是一个人全套弄的话就不会出现下面问题). 二 Reques ...
- Visual Studio 2010 SP1 在线安装后,找到缓存在本地的临时文件以便下次离线安装
由于在下载Visual Studio 2010安装程序(大约3G左右)的时候速度飞快,大约几分钟下载完毕(多线程下载工具下载),所以笔者在继续安装Visual Studio 2010 SP1的时候也选 ...
- 使用转义防御XSS
使用转义防御XSS 在输出的时候防御XSS即对用户输入进行转义,XSS的问题本质上还是代码注入,HTML或者javascript的代码注入,即混淆了用户输入的数据和代码.而解决这个问题,就需要根据用户 ...
- springcloud中eureka集群unavailable-replicas
unavailable-replicas 配置了集群,但是在注册中心显示另外的几个集群地址是不可用的: 1 首先需要再host中添加服务名映射,如果应映射了再看是否在yml中配置了prefer-ip- ...