【51nod】1565 模糊搜索
题解
这个字符集很小,我们可以把每个字符拿出来做一次匹配,把第一个字符串处理每个出现过的该字符处理成一个区间加,即最后变成第一个字符串的该位置能够匹配某字符
例如对于样例
10 4 1
AGCAATTCAT
ACAT
我们做A的时候,把第一个串处理成
AAAAAA00AA0
第二个串
A0A0
那么就变成第二个串从第一个串每个位置开始能不能匹配上第二个串所有的A了
我们发现把第二个串反序之后和第一个串求一个卷积,那么第一个串每个位置如果系数等于第二个串该字符出现次数,那么证明这个位置可以匹配一个第二个串的末尾
对于每个位置把所有字符集的答案&起来就好
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define MAXN 200005
#define pii pair<int,int>
#define mp make_pair
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const db PI = acos(-1.0);
char s1[MAXN],s2[MAXN];
int K,S,T;
int a[MAXN],b[MAXN],c[MAXN];
bool vis[MAXN];
struct Complex {
db r,i;
Complex(db real = 0.0,db image = 0.0) {
r = real;i = image;
}
friend Complex operator + (const Complex &a,const Complex &b) {
return Complex(a.r + b.r,a.i + b.i);
}
friend Complex operator - (const Complex &a,const Complex &b) {
return Complex(a.r - b.r,a.i - b.i);
}
friend Complex operator * (const Complex &a,const Complex &b) {
return Complex(a.r * b.r - a.i * b.i,a.r * b.i + a.i * b.r);
}
}p1[MAXN * 4],p2[MAXN * 4];
void FFT(Complex *p,int L,int on) {
for(int i = 1 , j = L / 2 ; i < L - 1 ; ++i) {
if(i < j) swap(p[i],p[j]);
int k = L / 2;
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= L ; h <<= 1) {
Complex wn = Complex(cos(on * 2 * PI / h),sin(on * 2 * PI / h));
for(int k = 0 ; k < L ; k += h) {
Complex w = Complex(1.0,0.0);
for(int j = k ; j < k + h / 2 ; ++j) {
Complex u = p[j],t = p[j + h / 2] * w;
p[j] = u + t;
p[j + h / 2] = u - t;
w = w * wn;
}
}
}
if(on == -1) {
for(int i = 0 ; i < L ; ++i) p[i].r /= L;
}
}
int ci(char c) {
if(c == 'A') return 1;
else if(c == 'G') return 2;
else if(c == 'C') return 3;
else return 4;
}
void Init() {
read(S);read(T);read(K);
scanf("%s%s",s1 + 1,s2 + 1);
for(int i = 1 ; i <= S ; ++i) a[i] = ci(s1[i]);
for(int i = 1 ; i <= T ; ++i) b[i] = ci(s2[i]);
}
void Solve() {
memset(vis,1,sizeof(vis));
for(int i = 1 ; i <= 4; ++i) {
int t = 1;
while(t <= S + T) t <<= 1;
int cnt = 0;
memset(c,0,sizeof(c));
for(int j = 1 ; j <= S ; ++j) {
if(a[j] == i) c[max(1,j - K)]++,c[min(j + K + 1,S + 1)]--;
}
for(int j = 1 ; j <= S ; ++j) {
c[j] += c[j - 1];
if(c[j]) p1[j - 1] = Complex(1.0,0.0);
else p1[j - 1] = Complex(0.0,0.0);
}
for(int j = S ; j < t ; ++j) p1[j] = Complex(0.0,0.0);
for(int j = 1 ; j <= T ; ++j) {
if(b[j] == i) p2[T - j] = Complex(1.0,0.0),++cnt;
else p2[T - j] = Complex(0.0,0.0);
}
for(int j = T ; j < t ; ++j) p2[j] = Complex(0.0,0.0);
FFT(p1,t,1);FFT(p2,t,1);
for(int j = 0 ; j < t ; ++j) p1[j] = p1[j] * p2[j];
FFT(p1,t,-1);
for(int j = 0 ; j < S ; ++j) {
if((int)(p1[j].r + 0.5) == cnt) vis[j] &= 1;
else vis[j] &= 0;
}
}
int ans = 0;
for(int i = 0 ; i < S ; ++i) if(vis[i]) ++ans;
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【51nod】1565 模糊搜索的更多相关文章
- 51nod 1565模糊搜索(FFT)
题目大意就是字符串匹配,不过有一个门限k而已 之前有提到过fft做字符串匹配,这里和之前那种有些许不同 因为只有A,C,G,T四种字符,所以就考虑构造4个01序列 例如,模板串a关于'A'的01序列中 ...
- 51nod 1565 模糊搜索 FFT
这...好强啊\(QwQ\) 思路:卷积?\(FFT\)? 提交:\(5\)次 错因:一开始的预处理写错了(竟然只错了最后几个大点)闹得我以为\(FFT\)写挂了\(QwQ\) 题解: 对四种字符分开 ...
- 51NOD 1565:模糊搜索——题解
http://www.51nod.com/onlineJudge/questionCode.html#problemId=1565¬iceId=445588 有两个基因串S和T,他们只包 ...
- 51Nod 快速傅里叶变换题集选刷
打开51Nod全部问题页面,在右边题目分类中找到快速傅里叶变换,然后按分值排序,就是本文的题目顺序. 1.大数乘法问题 这个……板子就算了吧. 2.美妙的序列问题 长度为n的排列,且满足从中间任意位置 ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- BZOJ 1565: [NOI2009]植物大战僵尸
1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2317 Solved: 1071[Submit][Stat ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
- 51Nod 1278 相离的圆
51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...
随机推荐
- 2017 清北济南考前刷题Day 2 morning
期望得分:100+30+60=190 实际得分:100+30+30=160 T1 最优方案跳的高度一定是单调的 所以先按高度排序 dp[i][j] 跳了i次跳到j 枚举从哪儿跳到j转移即可 #incl ...
- 1130 N的阶乘的长度 V2(斯特林近似)
1130 N的阶乘的长度 V2(斯特林近似) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720, ...
- idea 安装lombok 插件过程
一.作用 Lombok是一个可以通过简单的注解的形式来帮助我们简化消除一些必须有但显得很臃肿的 Java 代码的工具,bean,entity等类,绝大部分数据类类中都需要get.set.toStrin ...
- pandas 视频讲座 from youtube
Stephen Simmons - Pandas from the inside - YouTube https://www.youtube.com/watch?v=Dr3Hv7aUkmU 2016年 ...
- linux 自定义yum仓库、repo文件 yum命令
目录 自定义yum仓库:createrepo 自定义repo文件 使用yum命令安装httpd软件包 卸载httpd软件包:yum –y remove 软件名 清除yum缓存:yum clean al ...
- Element-UI 表格 列过多内容换行问题
本文地址:http://www.cnblogs.com/veinyin/p/8487098.html 一般表格不会有很多列,所以在使用时会很方便,但是如果有25+个列时,就会发现宽度完全不够用,只有 ...
- TCP/IP 网络编程的理解
一.网络各个协议:TCP/IP.SOCKET.HTTP等 网络七层由下往上分别为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 其中物理层.数据链路层和网络层通常被称作媒体层,是网络工程 ...
- 单调栈(G - Sliding Window POJ - 2823 )
题目链接:https://cn.vjudge.net/contest/276251#problem/G 题目大意:给你n和m,然后问你对于(m,n)这中间的每一个数,(i-m+1,i)这个区间的最小值 ...
- Java并发编程(4)--生产者与消费者模式介绍
一.前言 这种模式在生活是最常见的,那么它的场景是什么样的呢? 下面是我假象的,假设有一个仓库,仓库有一个生产者和一个消费者,消费者过来消费的时候会检测仓库中是否有库存,如果没有了则等待生产,如果有就 ...
- sleep命令
sleep支持睡眠(分,小时) sleep 1 睡眠1秒 sleep 1s 睡眠1秒 sleep 1m 睡眠1分 sleep 1h 睡眠1小时