BZOJ5286 HNOI/AHOI2018转盘(分块/线段树)
显然最优走法是先一直停在初始位置然后一次性走完一圈。将序列倍长后,相当于找一个长度为n的区间[l,l+n),使其中ti+l+n-1-i的最大值最小。容易发现ti-i>ti+n-(i+n),所以也就相当于是后缀最大值最小。设ti-i=ai,即要求min{l+max{al..2n}}+n-1 (l=1..n)。如果没有修改的话只要扫一遍就行了。
线段树看起来很难维护,考虑分块。每一块求出仅考虑该块的ai时上述值的前缀min和ai的后缀max。对于查询,从后往前考虑所选区间左端点在哪一块。如果该块某个位置出现了整个序列的后缀最大值,序列后面的部分就不会对该块之前位置的答案产生影响,可以直接使用之前求出的答案。于是根据后缀最大值将该块划分成两部分,后一部分由于max{ai}被固定为后缀最大值,当然选择尽量左的点时最优。修改时暴力重构块即可。块大小取sqrt(nlogn)时最优,为O(msqrt(nlogn))。没有卡常也在慢如狗的bzoj上只跑了11s。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define inf 2000000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,op,a[N],L[N],R[N],pos[N],mx[N],mn[N],block,num,ans=inf;
void build(int x)
{
mx[R[x]]=a[R[x]];mn[R[x]]=R[x]+a[R[x]];
for (int i=R[x]-;i>=L[x];i--)
mn[i]=i+(mx[i]=max(mx[i+],a[i]));
for (int i=L[x]+;i<=R[x];i++)
mn[i]=min(mn[i-],mn[i]);
}
int query()
{
int u=-inf,ans=inf;
for (int i=*num;i>num;i--) u=max(u,mx[L[i]]);
for (int i=num;i>=;i--)
{
int l=L[i],r=R[i],x=R[i]+;
while (l<=r)
{
int mid=l+r>>;
if (mx[mid]<=u) x=mid,r=mid-;
else l=mid+;
}
ans=min(ans,x+u);if (x>L[i]) ans=min(ans,mn[x-]);
u=max(u,mx[L[i]]);
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5286.in","r",stdin);
freopen("bzoj5286.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),op=read();block=sqrt(n*log(n+));num=(n-)/block+;
for (int i=;i<=n;i++) a[i]=a[i+n]=read();
for (int i=;i<=n*;i++) a[i]-=i;
for (int i=;i<=num;i++)
{
L[i]=R[i-]+,R[i]=min(n,L[i]+block-);
for (int j=L[i];j<=R[i];j++)
pos[j]=i;
build(i);
}
for (int i=num+;i<=*num;i++)
{
L[i]=R[i-]+,R[i]=min(*n,L[i]+block-);
for (int j=L[i];j<=R[i];j++)
pos[j]=i;
build(i);
}
ans=query()+n-;cout<<ans<<endl;
while (m--)
{
int x=read()^ans*op,y=read()^ans*op;
a[x]=y-x,a[x+n]=y-x-n;build(pos[x]),build(pos[x+n]);
printf("%d\n",ans=query()+n-);
}
return ;
}
事实上这个做法可以扩展到线段树上(其实完全没有任何相似的地方吧?)。考虑每个节点维护该区间的最大值和仅考虑该区间ai时左半部分的最优答案。只要解决如何合并两个区间就可以了。类似的,右边的区间可以直接返回答案,然后考虑左节点的右半部分和右节点最大值的大小,如果左节点较大,直接返回左节点的左半部分答案并递归右节点,否则递归左节点。于是复杂度即为O(nlog2n)。鬼知道我在干什么莫名其妙写了一晚上。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define inf 2000000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,op,a[N],ans=inf;
struct data{int l,r,max,ans;
}tree[N<<];
int query(int k,int mx)
{
if (tree[k].l==tree[k].r) return tree[k].l+max(mx,tree[k].max);
if (tree[k<<|].max>=mx) return min(tree[k].ans,query(k<<|,mx));
else return min((tree[k].l+tree[k].r>>)++mx,query(k<<,mx));
}
void build(int k,int l,int r)
{
tree[k].l=l,tree[k].r=r;
if (l==r) {tree[k].max=a[l];return;}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
tree[k].max=max(tree[k<<].max,tree[k<<|].max);
tree[k].ans=query(k<<,tree[k<<|].max);
}
void modify(int k,int p,int x)
{
if (tree[k].l==tree[k].r) {tree[k].max=x;return;}
int mid=tree[k].l+tree[k].r>>;
if (p<=mid) modify(k<<,p,x);
else modify(k<<|,p,x);
tree[k].max=max(tree[k<<].max,tree[k<<|].max);
tree[k].ans=query(k<<,tree[k<<|].max);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5286.in","r",stdin);
freopen("bzoj5286.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),op=read();
for (int i=;i<=n;i++) a[i]=a[i+n]=read();
for (int i=;i<=n*;i++) a[i]-=i;
build(,,*n);
ans=tree[].ans+n-;cout<<ans<<endl;
while (m--)
{
int x=read()^ans*op,y=read()^ans*op;
modify(,x,y-x),modify(,x+n,y-x-n);
printf("%d\n",ans=tree[].ans+n-);
}
return ;
}
BZOJ5286 HNOI/AHOI2018转盘(分块/线段树)的更多相关文章
- 【BZOJ5286】[HNOI2018]转盘(线段树)
[BZOJ5286][HNOI2018]转盘(线段树) 题面 BZOJ 洛谷 题解 很妙的一道题目啊.(全世界除了我这题都有40分,就我是一个状压选手 首先来发现一些性质,我们走一圈一定不会更差. 为 ...
- [HNOI/AHOI2018]转盘(线段树优化单调)
gugu bz lei了lei了,事独流体毒瘤题 一句话题意:任选一个点开始,每个时刻向前走一步或者站着不动 问实现每一个点都在$T_i$之后被访问到的最短时间 Step 1 该题可证: 最优方案必 ...
- 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)
题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...
- [BZOJ5286][洛谷P4425][HNOI2018]转盘(线段树)
5286: [Hnoi2018]转盘 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 15 Solved: 11[Submit][Status][Di ...
- CDOJ 1157 数列(seq) 分块+线段树
数列(seq) Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1157 Desc ...
- CDOJ 1292 卿学姐种花 暴力 分块 线段树
卿学姐种花 题目连接: http://acm.uestc.edu.cn/#/problem/show/1292 Description 众所周知,在喵哈哈村,有一个温柔善良的卿学姐. 卿学姐喜欢和她一 ...
- BZOJ - 2957 (分块/线段树)
题目链接 本质是维护斜率递增序列. 用分块的方法就是把序列分成sqrt(n)块,每个块分别用一个vector维护递增序列.查询的时候遍历所有的块,同时维护当前最大斜率,二分找到每个块中比当前最大斜率大 ...
- [HNOI/AHOI2018]转盘
一个结论:一定存在一个最优解只走一圈.否则考虑从最后一个结束位置开始一定可以达到相同效果 画个图,类似是一种斜线感觉 考虑一个高度贡献的最高点 对于i开始的连续n个,答案是:max(Tj-j)+i+n ...
- [HNOI2018]转盘[结论+线段树]
题意 题目链接 分析 首先要发现一个结论:最优决策一定存在一种 先在出发点停留之后走一圈 的情况,可以考虑如下证明: 如果要停留的话一定在出发点停留,这样后面的位置更容易取到. 走超过两圈的情况都可以 ...
随机推荐
- Python中的注释
1.1 注释的目的 通过用自己熟悉的语言,在程序中对某些代码进行标注说明,这就是注释的作用,能够大大增强程序的可读性. 1.2 注释的分类 1.2.1 单行注释 以#开头,#右边的所有东西当做说明,而 ...
- SpringBoot之MongoTemplate的查询可以怎么耍
学习一个新的数据库,一般怎么下手呢?基本的CURD没跑了,当可以熟练的增.删.改.查一个数据库时,可以说对这个数据库算是入门了,如果需要更进一步的话,就需要了解下数据库的特性,比如索引.事物.锁.分布 ...
- Java字符串连接操作的性能问题
首先,看一段实验程序: package com.test; class StringTest { public static void main(String[] args) { long start ...
- 2013第四届蓝桥杯C/C++ B组
题目标题: 高斯日记:Excel 大数学家高斯有个好习惯:无论如何都要记日记. 他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210 后来人们知道,那个整数就是日期,它表示 ...
- mongoose和mongodb的几篇文章 (ObjectId,ref)
http://mongoosejs.com/docs/populate.html http://stackoverflow.com/questions/6578178/node-js-mongoose ...
- 使用Python批量修改数据库执行Sql文件
由于上篇文章中批量修改了文件,有的时候数据库也需要批量修改一下,之前的做法是使用宝塔的phpMyAdmin导出一个已经修改好了的sql文件,然后依次去其他数据库里导入,效率不说极低,也算低了,且都是些 ...
- Final发布:文案+美工展示博客
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2476 小组介绍 组长:付佳 组员:张俊余 李文涛 孙赛佳 田良 于洋 段 ...
- Spring MVC controller的方法返回值
ModeAndView 可以在构造时确定需要跳转的页面也可以通过setViewName方法来确定需要跳转的页面 String 指定返回页面的视图名称,页面跳转,如果加了@ResponseBody注解, ...
- 使用sqlyog创建数据库的错误
1.错误代码: 1064 You have an error in your SQL syntax; check the manual that corresponds to your MySQL s ...
- bata4
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员:恺琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组 ...