题目描述

Tom最近在研究一个有趣的排序问题。如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序。

操作aaa

如果输入序列不为空,将第一个元素压入栈S1​

操作b

如果栈S1不为空,将S1栈顶元素弹出至输出序列

操作c

如果输入序列不为空,将第一个元素压入栈S2​

操作d

如果栈S2不为空,将S2​栈顶元素弹出至输出序列

如果一个1−n的排列P可以通过一系列操作使得输出序列为1,2,…,(n−1),n,Tom就称P是一个“可双栈排序排列”。例如(1,3,2,4)就是一个“可双栈排序序列”,而(2,3,4,1)不是。下图描述了一个将(1,3,2,4)排序的操作序列:<a,c,c,b,a,d,d,b>

当然,这样的操作序列有可能有几个,对于上例(1,3,2,4),<a,c,c,b,a,d,d,b>是另外一个可行的操作序列。Tom希望知道其中字典序最小的操作序列是什么。

输入输出格式

输入格式:

第一行是一个整数n。

第二行有n个用空格隔开的正整数,构成一个1−n的排列。

输出格式:

共一行,如果输入的排列不是“可双栈排序排列”,输出数字0;否则输出字典序最小的操作序列,每两个操作之间用空格隔开,行尾没有空格。

输入输出样例

输入样例#1:

4
1 3 2 4
输出样例#1:

a b a a b b a b
输入样例#2:

4
2 3 4 1
输出样例#2:

0
输入样例#3:

3
2 3 1
输出样例#3:

a c a b b d

说明

30%的数据满足: n≤10

50%的数据满足:n≤50

100%的数据满足: n≤1000

Solution:

  本题二分图染色+栈模拟。  

  若我们知道每个数应该放在哪个栈中,就可以去模拟了。

  考虑数$a_i,a_j,a_k$不能在同一栈的情况,若$i<j<k,a_i<a_j,a_i>a_k$那么$i,k$是肯定不能在同一栈内的,我们对二元组建边,那么就是个二分图染色的模型了。

  由于要字典序最小,所以每次染色时另当前未被染色的位置为栈1再去dfs,染色后每个位置所在的栈就确定了。

  然后就是纯模拟咯。

  (安利一个神奇的调试技巧:用iostream库下的cerr代替cout,在评测机测试时会直接跳过这条输出语句,但在终端可以输出,这样就能防止忘记删调试语句而写挂!>.^_^.<)

代码:

/*Code by 520 -- 9.5*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,a[N],minn[N],col[N];
int to[N],net[N],h[N],cnt;
int stk1[N],stk2[N],top1,top2; il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} bool dfs(int u){
for(RE int i=h[u];i;i=net[i])
if(!col[to[i]]) {
col[to[i]]=col[u]^;
if(!dfs(to[i]))return ;
}
else if(col[to[i]]==col[u]) return ;
return ;
} int main(){
ios::sync_with_stdio();
cin>>n,minn[n+]=0x7fffffff;
For(i,,n) cin>>a[i];
Bor(i,,n) minn[i]=min(minn[i+],a[i]);
For(i,,n) For(j,i+,n) if(a[i]>minn[j+]&&a[i]<a[j]) add(i,j),add(j,i);
For(i,,n) if(!col[i]) {
col[i]=;
if(!dfs(i))cout<<,exit();
}
For(i,,n) cerr<<col[i]<<' ';cerr<<endl;
int cnt=;
For(i,,n){
if(col[i]==) stk1[++top1]=a[i],cout<<"a ";
else stk2[++top2]=a[i],cout<<"c ";
while(top1&&stk1[top1]==cnt||top2&&stk2[top2]==cnt){
if(stk1[top1]==cnt) cout<<"b ",--top1;
else cout<<"d ",--top2;
++cnt;
}
}
return ;
}

P1155 双栈排序的更多相关文章

  1. P1155 双栈排序(二分图染色)

    P1155 双栈排序(二分图染色) 题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一 ...

  2. 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)

    洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...

  3. [NOIP2008] 提高组 洛谷P1155 双栈排序

    题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...

  4. 洛谷——P1155 双栈排序

    题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...

  5. 洛谷P1155 双栈排序

    这题什么毒瘤......之前看一直没思路,然后心说写个暴搜看能有多少分,然后就A了??! 题意:给你一个n排列,求它们能不能通过双栈来完成排序.如果能输出最小字典序方案. [update]这里面加了一 ...

  6. LOJ P1155 双栈排序 二分图染色 图论

    https://www.luogu.org/problem/show?pid=P1155 题解: https://www.byvoid.com/zhs/blog/noip2008-twostack 开 ...

  7. 洛谷P1155 双栈排序(贪心)

    题意 题目链接 Sol 首先不难想到一种贪心策略:能弹则弹,优先放A 然后xjb写了写发现只有\(40\),原因是存在需要决策的情况 比如 \(A = {10}\) \(B = {8}\) 现在进来一 ...

  8. Luogu P1155 双栈排序 图论?模拟吧。。

    今天想做做图论,于是点开了这道题....(是二分图染色然而我没看出来) 四种操作及条件: 1. s1.push() 需满足 待push的元素小于栈顶 && { 若在原序列中,待push ...

  9. 【Luogu】P1155双栈排序(二分图)

    题目链接在此 此题一开始写了个深搜,过了30%的数据,也就是n<=10的那一段.... 然后看了题解发现这是个二分图的判断. 我们先举例子找到不能放进一个栈里的规律.设有数列[2,3,1,4] ...

随机推荐

  1. 【敏捷】7.showcase,开发中必须引起重视的小环节

    有人说,测试者来自火星,开发者来自金星.这是因为软件测试员和软件开发者就好比一对冤家,里面的缘由说不清也道不明.开发代表着创造,而测试则代表着摧毁,因为测试的目的就是以各种方式不断地从开发出的产品中发 ...

  2. iframe的简单使用方法

    1.父页面调用子页面的元素(a代表iframe的id或者class,b代表子页面) $('a').contents().find("b") 2.子页面调用父页面的元素(c代表父页面 ...

  3. 安装vs2017后,RDLC 报表定义具有无法升级的无效目标命名空间

    原先的RDLC报表定义用的命名空间是2008,用vs2017报表设计器重新保存后,会自动升级成2016,导致无法使用. 不想升级控件,太麻烦,所以就手动修改RDLC文件吧. 1.修改http://sc ...

  4. Allegro16.6结构文件dxf文件的输出与导入——凡亿PCB

    在pcb设计中,结构文件的导入是不可或缺的一个步骤,使用allegro16.6软件操作如下. 一.结构文件的输出 1.在allegro16.6将pcb颜色显示设置成只剩需要导出的结构. 2.看到all ...

  5. Tomcat性能优化方案

    1. 提高JVM栈内存Increase JVM heap memory 你使用过tomcat的话,简单的说就是"内存溢出". 通常情况下,这种问题出现在实际的生产环境中.产生这种问 ...

  6. 2018Java年底总结

    一年又过去了,这是我的第二年的JAVA开发,总感觉有很多想说的,可惜语言组织能力着实一般,以下列举一些今年的总结. 1.首先告诫一下新入行或者新入职经验不多的小伙伴,写sql的时候根据业务能单表就单表 ...

  7. 电梯调度 结对项目开发(郭林林&胡潇丹)

    (一)需求分析: 上升,下降,开门,关门: 超过负载以后发出警报,下去乘客: 电梯出现故障后,电梯停止: 电梯楼层的输入框可以同时指定所要到的楼层,也是楼层的显示框: 电梯同时记录多个状态,即为到达多 ...

  8. 启动docker 端口映射时IPV4无法使用

    CentOS7 Docker启动一个web服务,使用端口映射报错: WARNING: IPv4 forwarding is disabled. Networking will not work. 查找 ...

  9. python编辑选课系统

    一.需求分析 1. 创建北京.上海 2 所学校 2. 创建linux , python , go 3个课程 , linux\py 在北京开, go 在上海开 3. 课程包含,周期,价格,通过学校创建课 ...

  10. 如何防范和应对Redis勒索,腾讯云教你出招

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 9月10日下午,又一起规模化利用Redis未授权访问漏洞攻击数据库的事件发生,此次 ...